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Directional solidification of a dilute electrically conducting binary alloy driven
by the combined action of buoyancy, surface-tension, and electromagnetic forces is
considered. A numerical methodology using a moving finite element technique is
proposed for the simulation of the above phase change process. The meltis modeled
as a Boussinesq fluid and the transient Navier—Stokes equations are solved simulta-
neously with the transient heat and solute transport equations. The location of the
advancing solid—liquid interface is numerically determined using an energy preserv-
ing weak form of the Stefan condition. The standard SUPG/PSPG method for the
simulation of incompressible fluid flow is here extended to flows driven by the combi-
nation of buoyancy, surface tension, and electromagnetic forces. A reference problem
of directional solidification of a dilute germanium alloy in a horizontal open-boat
configuration is considered. The relative influence of thermocapillary convection and
buoyancy-driven convection on the solidification process is investigated by varying
the Bond number. Thermocapillary convection is shown to have a significant in-
fluence on various solidification parameters, such as the shape of the solid-liquid
interface and the solute segregation, especially under low gravity conditions. The
influence of an external magnetic field on the reference solidification problem is in-
vestigated both in a normal and areduced gravity environment. Itis demonstrated that
the application of an appropriate strong magnetic field significantly damps the melt
flow and improves the solute segregation pattern. The relative influence of an external
magnetic field on the solidification process is also studied by independently varying
the orientation and magnitude of the applied magnetic field 2001 Academic Press
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1. INTRODUCTION

Convection in the bulk liquid is an important parameter in crystal growth from the me
A typical driving force for convection in the melt is the buoyancy force induced by therm
and solutal gradients in the liquid. Another driving force for convection, besides buoyan
is the surface-tension gradient that results from temperature or concentration gradients
free surface. Surface tension typically decreases with increasing temperature. In a free
surface with a temperature gradient, surface tension forces drive the flow from region
low surface tension (hot) to areas of high surface tension (cold). Surface tension forces
balanced by viscous shear which transfers momentum to neighboring liquid layers bec:
of fluid viscosity. Similar to the buoyancy driven flow, continuity causes the development
a bulk flow in the whole melt volume. This convective motion is referred to as Marangoni
thermocapillary convection and occurs if free melt surfaces exist in the growth configurat
[1,2].

The study of Marangoni convection in crystal growth from the melt has proven to |
of particular interest with respect to its influence on the distribution of impurities in tt
obtained crystal structure [3-5]. The role of Marangoni convection becomes quite domir
in reduced-gravity environments. Even under normal gravity, the thermocapillary eff
can be very important in the overall transport pattern. A review of various numerical a
experimental studies of the interaction of the surface-tension-driven flow and the buoyar
driven flow in crystal growth melts can be found in [3, 6].

Studies of surface tension effects have concentrated largely on flows without phase ch:
[7—11]. Exceptions include the studies reported in [12—15]. In [12] and [13], the meltir
and solidification of pure materials was considered, during which liquid convection w
driven by a combination of buoyancy and surface-tension forces. In [14, 15], the auth
considered the effects of thermo/diffusocapillary convection on the solidification of a bine
aqueous solution in arectangular cavity using a single region (continuum) formulation. Tt
study showed that surface-tension effects influence significantly the fluid flow and interf:
morphology during the early stages of the solidification process. It was also observed
the recirculating flow in the melt is stronger, which in turn significantly alters the interfac
shape. The action of thermocapillary convection on crystal growth processes is genel
undesirable because the transition to unsteady behavior is hard to control [16].

Application of magnetic fields is known to stabilize both flow and temperature osc
lations in the melt (see Chapters 4 and 7 in [17]) and thereby represents a promi:
opportunity to obtain an improved crystal quality. The effects of a magnetic field on m
convection have been previously investigated by several authors [18-23]. The effects
strong vertical magnetic field on convection and segregation in the vertical Bridgman cr
tal growth process were considered in [20]. More recently, Ben Hetdid [21-23] have
studied the influence of an external magnetic field on convection in a horizontal Bridgn
configuration. In [21], an extensive numerical study is presented of buoyancy- and surf
tension-driven convection in a horizontal rectangular cavity under the action of a const
magnetic field. Results of a similar study on a three-dimensional parallelepiped domain
presented in [22]. These formulations dealt purely with the effects of a magnetic field
the fluid flow and did not include the effects of phase-change. In [23], a numerical stu
was presented of macrosegregation in a horizontal Bridgman configuration under vari
fluid flow conditions and with the assumption of a planar solid—liquid interface moving
a constant velocity.
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In this paper, the complex interaction between solidification and convection for a dilt
binary fluid that is crystallized in a rectangular cavity with an open boundary is investigate
A broad range of responses are investigated and reported in a systematic manner by va
the conditions of the relative strength of the driving physical mechanisms under both n
mal and reduced gravity levels. In the present work, the SUPG/PSPG stabilized FEM
incompressible flows [24, 25] has been extended to a front tracking moving finite elem
framework appropriate for the analysis of solidification processes. The sharp solid—liq
interface model adopted here is limited to systems with a thin mushy layer and to cry:s
growth processes with a low growth rate [26]. Even though the applicability of this moc
is limited, it results in a mathematically tractable framework that can be used to provid
detailed insight into the complex interaction of heat, mass, and momentum transport in
solidification system [27—-30]. For materials for which this assumption of a thin mushy zo
is not applicable, sharp interface models have been used to pose optimal control probil
in which the interface stability is enforced explicitly by a proper selection of the proce
conditions (e.g., by a boundary heat flux design [31, 32]).

The plan of the paper is as follows. In the following section, the physical problem and t
governing equations are defined. Section 3 provides a brief outline of the various solut
methods employed to solve the numerical model. Section 4 presents the results of
numerical experiments, wherein the various aspects of the predicted solutions and t
implications on the final crystallized solid are discussed. Finally, in Section 5, conclusic
are presented based on the various numerical experiments.

2. DIRECTIONAL SOLIDIFICATION OF A BINARY ALLOY IN AN OPEN-BOAT
CONFIGURATION IN THE PRESENCE OF A MAGNETIC FIELD

Here, a two-dimensional, rectangular m@éids considered filled with a dilute, incom-
pressible, electrically conducting binary alloy which is initially liquid and uniform in tem:
perature and composition (Fig. 1). The top boundary of the box is “free” and subject
temperature induced surface-tension gradients. At timeD™, the temperature of the left
vertical boundani s is instantaneously dropped and maintained below the freezing tel
perature corresponding to the bulk concentration of the melt, so that solidification of 1
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FIG.1. Schematic of the binary alloy solidification problem in an open-boat configuration under the influen
of an externally applied magnetic field.
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alloyimmediately commences at this “cold” boundary. The motion of the meltis determin
by the combined action of buoyancy, surface-tension, and electromagnetic forces.

Let us denote the solid region B, the liquid region by, and the solid—liquid interface
asI';. The region2, has a boundary; which consists of"}, I'q (the mold wall on the
liquid side),I"y (the bottom boundary of the liquid domain), afig (the top boundary of
the liquid domain). Similari2s has boundary's, which consists of|, I'gs, I'ps, and@Ts.

In the solidification system considered in this work, the following assumptions are intt
duced regarding the transport of heat, mass, and momentum:

e The thermal and physical properties are constant within each phase.

e The solid and liquid phases are in local thermodynamic equilibrium.

e The melt flow is assumed to be a laminar flow induced by thermal, solutal, and surfa
tension gradients.

e The Boussinesq approximation can be invoked.

e The solute diffusion in the solid is negligible compared to that in the melt, i.e
Ds/D; — 0 (Ds and Dy, respectively, are the solid and liquid mass diffusivities).

e Velocities resulting from density change upon phase change are negligible.

e The free-surface deformation is negligible.

e Capillary undercooling resulting from the local curvature of the phase bounds
(Gibbs—Thompson effect) is negligible.

e A macroscopically stable solid-liquid interface exists between the solid and the ligt
regions.

The above assumptions with the exception of the last three are generally valid for sc
ification systems with dilute concentration levels, moderate temperature differences,
a Newtonian melt. The assumption that the melt free surface deformation is negligibl
strictly valid only at low capillary numbers. This is generally true for metals and sern
conductor melts [10]. The Gibbs—Thompson effect is neglected as it is usually import
only on very small scales [6, 33]. Finally, the assumption that a sharp solid—liquid interf
exists between the solid and liquid domains is quite debatable. Once morphological in
bility occurs, the perturbations continue to grow to form a two-phase mushy zone in wh
dendrites are bathed in interstitial melt. Many theoretical models for simulating dendri
solidification processes incorporating a mushy model have been proposed in the re
years [34]. In this paper, however, the simplified model of a sharp solid—liquid interface
adopted to allow us to concentrate on examining the complex interactions of heat, m
and momentum transport in the solidification system. A number of computational stuc
have been conducted using the sharp interface model, and the results were found to |
an excellent qualitative agreement with experiments [27-29].

The governing equations for the binary alloy solidification system are now introduce
Let L be a characteristic length of the domairthe densityk the thermal conductivityy
(¢ = k/pc) the thermal diffusivity,D the solute diffusivityg, the electrical conductivity,
andv the kinematic viscosity of the liquid melt. All fields and properties refer to the liqui
domain unless denoted otherwise. The characteristic scale for time is takénasnd for
velocity ase/L. The temperature is defined a® = (T — To)/AT, whereT, Ty, andAT
are the temperature, reference temperature, and reference temperature drop, respec
Likewise, the dimensionless concentration fieli$ defined as¢ — c,)/Ac, wheret, c,,
and Ac are the concentration, reference concentration, and reference concentration c
respectively. The characteristic scale for the electric potepimtaken as|B,|, whereB,
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is the externally applied magnetic field. Since only dimensionless quantities will be us
in the rest of this paper, the symbpis used hereafter to denote the dimensionless electr
potential.

The basic equations used in the simulation of the melt flow are the incompressi
Navier—Stokes equations, including the Lorentz force [35]. The Boussinesq approximat
is also used for defining buoyancy. The other main equations governing the fluid flow in:
liquid domain are the energy equation and the solute transport equation. These equa
are written as

V-v=0, 1)
av
P Vv=-Vp+ Prv? —[Rar Prg — Ra.Prcle
+ Ha?Pr[-V¢ + Vv x eg] x e, (2)
a6,
L v.ve = v 3)
ot
ac 1w2
5—i-v~Vc:Le Ve, 4)

where the governing dimensionless groups are the Prandtl nuiber {/«), the Lewis
number (e = «/D), the thermal Rayleigh numbeR& = g8t AT L3/va), the solutal
Rayleigh numberRa. = gB.AcL3/va), and the Hartmann numbeé = (%)WBOL),
whereg is the gravity constan@r is the thermal coefficient of expansion, aggdis the
solutal coefficient of expansion. Herg,andeg denote unit vectors in the directions of the
gravity and magnetic field vectors, respectively.

Heat transfer in the solid is by conduction and is written as

965 5
— = R, V“0s, 5
5 = RV (5)
whereR, = as/«) is the ratio of the thermal diffusivities.

The temperature at, is set by the binary equilibrium phase diagram as

0 = 0m + mc (6)

where the dimensionless slope of the liquidus line is given as = MiguiqusAC/AT,
Miquidus 1S the dimensional slope of the liquidus, aéd is the dimensionless melting
temperature corresponding to the reference concentration.

The energy and solute balanceg attake the form

905 96, 4
— — — =Stev;i - n, 7
R« an  an f (7)
ac
— =Le( —Dvs-n(c+59), (8)
an
where R = ks/k; is the ratio of the thermal conductivities of the solid and liquid,
Ste= (C,AT)/Ly is the Stefan numbek is the partition coefficient, and = ¢,/Ac

is the ratio of the reference concentratignand reference concentration droye. In the
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above definitionC, is the heat capacity of the liquid melt, ahg, is the latent heat of
solidification.

A no-slip and no-penetration boundary condition on the velocity field is imposed on
the liquid boundaries other than the upper free surface (Fig. 1). The surface tension or
free surface is approximated @s= oo[1 — y (T — To)], wherey = —(1/0,)(dc/0T). In
the present work, the variation of the surface tension with solute concentration is negle
as only minute amounts of solute are considered and hence no appreciable change ir
face tension occurs as a result of concentration variation [7]. The hydrodynamic bounc
condition on the free surfadg, is expressed as

V(v -t)-n=MaVeé 1), 9)

wheret is a tangent vector to the free surface, afld = (9o /9T)ATL/(pva) is the
thermal Marangoni number. Equation (9) is used as a Neumann boundary condition in
solution of the flow equations once the temperature field has been computed. As mentic
earlier, the free-surface deformation is neglected and a no-penetration boundary cond
is imposed on the free surface.

It is assumed that adiabatic conditions are maintained'yiu I'y. The equilibrium
condition (see Eg. (6)) imposes a Dirichlet boundary conditiofl o\ problem dependent
flux/temperature condition on the outer liquid bound&gy completes the definition of
the thermal problem defined @& . The solutal boundary conditions are provided by the
impermeable wall condition on the outer boundaries and a flux condition determined by
solute conservation condition (see Eq. (8))[gn The electric potential functiog(x, t) is
governed by an insulating wall condition on the boundary

In the solid phas&s, the equilibrium condition (Eqg. (6)) on,, the problem-dependent
flux/temperature condition dr,s, and the adiabatic conditions &g, U I'ps (Fig. 1) provide
the required boundary conditions for the solution of the heat transport problem. Fina
note that the shape and positionIof are integral parts of the solution of the nonlinear
solidification problem.

3. SOLUTION METHODOLOGY AND MODEL VALIDATION

The stabilized finite element formulation using an equal-order velocity-pressure inter
lation as proposed by Tezduyetral.[24, 25] is adopted in this work for the fluid flow sub-
problem. This method achieves stabilization by adding two terms to the standard Gale
formulation of the problem. The first term is the well-known SUPG (streamline-upwir
Petrov—Galerkin) term. The second stabilization term is the PSPG (pressure-stabiliz
Petrov—Galerkin) term, which was introduced in [24, 25] to accommodate equal-ord
interpolation velocity-pressure elements. In this work, the above analysis for the simulat
ofincompressible flows is extended to the simulation of flows driven by the combined act
of buoyancy, surface tension and electromagnetic forces. This FEM fluid flow formulati
is briefly addressed in the following discussion.

Let £ denote the set of elements resulting from the finite element discretization of 1
computational domaif®, into subdomain§?, e = 1, 2, 3, ...., ne;, whereng is the number
of elements. Associated with this discretization, we define the following finite eleme
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interpolation and variational function spaces for the velocity and pressure:

=V e[HMN@]™, V" =0o0on T} —Ty, V"-n=0 on I'y} (10)
W= W e[HM"Q)]™, w'=0o0onT|—Ty, w'-n=0on Ty} (11)
S=Vp=1{alqeH" (12)

Using standard notation [24, 25], we now write the stabilized Galerkin formulation of tt
flow equations as follows. Find' € ! andp" € Sj such that

/M-(M+\/‘.Vvh>d9+/ cw) to(p WMde + [ q'v-Vde
Q ot Q

Q

+RarPr/wh~(9h—Ech)eg+Ha2Pr W' [V — V' x eg] x eg dQ
Q Rar Q

Ne|

+Z (cSh (% +V W — V.o (p", V") + PrRard"e; — PrRac"e,

+ Ha?Pr[Ve" — V" x eg] x eg)d2— [ w'- (oM -n)dI =0,

Ty

vu' e V), vqhe V). (13)

In the above formulation, two stabilizing terms have been added to the standard Gale
formulation; the one witls" is the SUPG term and the one withis the PSPG term. More
details on the form of these stabilizing terms can be obtained from [24, 25]. The above fl
flow formulation for coupled buoyancy, surface tension, and electromagnetically driv
flows is combined with an SUPG formulation for the heat and solute transport equatic
with discontinuous weighting functions and a classical Galerkin formulation for the elect!
potential equation.

After spatial discretization of the variational forms of the governing equations, the fc
lowing system of nonlinear ordinary differential equations is obtained for the solution
the velocity fieldv, the pressur@, the temperature fiel@, and the electric potential fielgl
in the liquid domain:

M + M;]{0) + [N(v) + N;(01{6} + [K + K;]{0) = {F}) (14)
[M -+ M3]{V} + [N(V) + N;(WI{V} + [K + Ks]{v} = [G + Gs]{p} + [D + Ds]{v}
+[B+Bg]{9—E—:c}+[H+H5]{¢}+[S]{9}=F+F5 (15)
GT{V} + M {V} + N (W){V} + KV} + G{p} + Dc{v}
R
o fo- f2el b o - EE, (16)
[K1{p} = [Pl{v}. 17)

In the above equationgy} denotes the vector of nodal values of the velocity figl¢i/}
the time derivative ofv}, {p} the vector of nodal values of the pressure fipld6} the
vector of nodal values of the temperature figld0} the time derivative o6}, and{¢}
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the vector of nodal values of the electric potential figld’he matrice, N(v), K, andG
(Egs. (15) and (16)) are derived, respectively, from the time-dependent, advective, visc
and pressure terms. The matBxin these equations is derived from the buoyancy term
whereas the matrice® andH are derived from the electromagnetic contributions. The
matrix Sis obtained from the surface-tension term. The subscsiptede are used here to
identify the SUPG and PSPG contributions, respectively. Similar notation is used for-
discrete heat equation in the melt (Eq. (14)). The discrete equations for the solute trans
equation in the melt and heat transport in the solid are similar in form to the discrete n
temperature equation shown in Eq. (14).

A moving finite element methodology is used together with an energy preserving we
form of the Stefan condition to allow tracking of the interfdte[26]. The extra convection
terms resulting from the mesh motion are implicitly incorporated into the nonlinear matric
N, Ns, N, N3, andN, in the discrete forms of the transport Egs. (14)—(16).

The time integration of the heat and solute transport equations is achieved usin
predictor—corrector scheme [26]. A one-step generalized trapezoidal rule (T1 formulat
of [24]) is used for the time integration of the flow equations. The electric potential equatsi
yields the linear system of Eq. (17), which is solved by a standard procedure. Althot
the discrete equations for the various transport problems are coupled, the solution of ti
equations at each time step is achieved in a decoupled fashion. The finite element ¢
of the solid and liquid domains are first updated using the calculated front velocity at -
earlier time step. The solution of the heat and solute transport equations in the melt
obtained next, which is followed by the solution of the flow equations. This is followe
by the solution of the electric potential equation. Next, the heat transport problem in
solid domain is solved. Finally, the weak form of the Stefan condition is solved to obte
the interface velocity field, which is used to update the finite element grids to the next ti
step. This solution technique has proven to be accurate and computationally efficient
the various numerical example problems tested.

Mass lumping and preconditioning were employed here to improve the efficiency of 1
method and to ensure smooth solutions. At each time step of the flow equations, a sy:
of linear equation#\x = b needs to be solved. In evolution problems, such as the one unc
consideration, the stiffness matixevolves very slowly. Thus, the stiffness matéxcal-
culated a few time steps earlier can be considered as a close approximation to the cu
stiffness matriXd, and hence can be employed as a very good preconditioner. Using this i
as the basis, an LU-factorization of the stiffness mais calculated at regular time steps
and is employed as a preconditioner in solving the flow equations. The period after wh
the LU-factorization is performed is a compromise between the computational cost and
improvement in the condition numbert A) of the resulting system. A preconditioned sta-
bilized bi-conjugate gradients method (BICGSTAB) [36] for the solution of nonsymmetr
system of linear equations is used for the solution of the resulting linear system at each
step. Further details on this preconditioning algorithm are available in a recent techn
report [37], wherein validation and computational performance studies are presentec
several benchmark incompressible flow problems using this solution technique. In addi
to confirming the accuracy of the solution procedures, the reported studies demonstr
the effectiveness of the preconditioning algorithm in reducing the CPU costs by a facto
high as 20 [37].

The entire implementation of the various transport equations was achieved using
object-oriented framework [26]. In addition to the validation studies reported above, |
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moving FEM formulation and numerical solution procedures have been successfully \
ified through comparisons (e.g., calculated temperature, flow fields, and the solid—liq
interface positions at various times) with reported numerical results for the solidification
a pure substance [13]. The numerical accuracy has also been confirmed through extel
comparisons with existing numerical results obtained using finite differences techniques
coupled thermocapillary and buoyant flow in a rectangular cavity [2, 10, 21]. The additior
effects of an externally applied magnetic field have also been studied and compared
the results reported in [21]. The obtained computational results were very satisfactory
confirmed the accuracy of the developed solution procedures.

In the example problems reported in this paper, for all subproblems except the fl
equations, a stopping tolerance aDE—06 was used to terminate the solution of the
nonlinear equations. The solution of the flow equations was stopped after two passes
time step, as suggested in [24]. Computations were carried out on a IBM RS6000 w
station. The overall cost of solving the various transport equations per time step was al
9 CPU seconds. The entire computations spanned over 40,000 time steps.

4. SOLIDIFICATION OF ANTIMONY-DOPED GERMANIUM
IN AN OPEN-BOAT CONFIGURATION

4.1. A Reference Binary Alloy Solidification Problem

A rectangular cavity is considered with an open free surface of dimensionx2 cm
initially filled with molten antimony-doped germanium at°4Doverheat. The right-hand
side vertical mold wall',; is maintained at the initial temperature, whereas the left vertice
mold wall o5 is suddenly cooled to a temperature @below the melting temperature of
pure germanium and maintained at that temperaturé fo0. The solidification process
starts and takes place under standard laboratory conditions (normal gravity, no magr
field). The thermophysical properties were compiled from References [16] and [38] &
are listed in Table I. It is assumed that the small concentrations of antimony do not le
to solutal-driven convection. Similar assumptions were employed in [38] for the growth
dilute gallium-doped germanium. The dimensionless parameters are summarized in Tab

TABLE |
Thermophysical Properties of Germanium

Thermal conductivity of the melt K, (W/°Ccm) 0.39
Thermal conductivity of the solid Ks (W/°Ccm) 0.17
Density of the melt o1 (glc?) 55
Density of the solid 0s (g/cn?) 5.5
Specific heat of the melt C,i (J/°C-9) 0.39
Specific heat of the solid Cos (J/°C-0) 0.39
Melting temperature Tm (°C) 937.4
Kinematic viscosity v(cn?/s) 0.0013
Heat of solidification Ly /9 460
Surface tension coefficient do/dT (N/mK) —0.26x 10
Thermal expansion coefficient Br (°C™YH 50x 10
Mass diffusivity of dopant D (cné/s) 55x 10

Equilibrium partition coefficient K 0.003
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BINARY ALLOY SOLIDIFICATION PROCESSES
Solid/liquid interface

Liquid

>

Adiabatic Surface

Dimensionless Groups and Their Characteristic Values

for Modeling Antimony-Doped Germanium Growth inan

Open-Boat Configuration

Prandtl number

Thermal Rayleigh number
Solutal Rayleigh number

Lewis number

Marangoni number

Hartmann number
Stefan number

Heat conductivity ratio
Heat diffusivity ratio

Slope of the liquidus

In problems dealing with surface-tension-driven flows, grid selection is influenced by 1
strength of the fluid flow near the free surface and, in particular, by the large velocity &

interface. Hence, the finite element mesh was biased toward the free surface in ordk
bilinear elements and 3321 nodes and is shown in Fig. 2. Through several computati
tests with various grid sizes, it was determined that the above discretization was suffic

to capture the macroscopic aspects of the fluid flow, solute, and temperature patterns
are the main focus of this work. Figure 2 also provides the imposed boundary conditi

temperature gradients characteristic of the singular region in the cold corner. For Marang
numbers associated with most flows, an extremely fine grid is required to resolve the
details of the corner flow precisely [14]. Moreover, in the transient solidification of a bina
mixture, this problem is aggravated because of the presence of the moving solid—lic
capture the essential details of the wall shear layers. The finite element grid consisted of
used in the various simulations.

Because of the fact that the time scale associated with cell formation is much less t
that associated with the solidification process and because of the presence of large vel
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FIG. 2. Sample finite element mesh at time= 10 for the solid and liquid domains.



394 SAMPATH AND ZABARAS

gradients near the free surface, it was necessary to use small time steps in the calcul
(At = 2.5 x 107%). The simulations were terminated at= 10 when the flow field had
almost achieved a steady state pattern.

The simulation shows that at early times the thermal gradients in the originally quiesc
melt cause surface-tension gradients on the free surface and density gradients in the
liquid. This leads to combined buoyancy and thermocapillary convection in the fluid. T
fluid velocities are maximum at the top free surface in regions close to the intdtface
Continuity of the fluid flow slowly leads to counter-clockwise circulation of the melt filling
the entire cavity. As the solidification process proceeds further, the interfastarts to
curve, with more solid volume formed at the bottom compared to the top part of the cav
At aroundtr = 1, two distinct weak recirculating cells form near the hot end of the cavit
(1.7 < x < 2.0), in addition to the main (strong) counter-clockwise recirculating cell filling
most of the cavity. With continued solidification, the cells slowly merge forming a variet
of weak cell patterns near the hot end. The main recirculating cell maintains its flow patte
however, slowly increasing the strength of the circulation. Figure 3 shows the streamlir
isopleths (iso-composition lines) and isotherms at intermediate time andt = 5,
whereas Fig. 4 shows the corresponding fields at the final#imel0. Note the significant

solid/liquid interface CONCENTRATION  solid/liquid interface
=2 TEMPERATURE

FIG. 3. Calculated contours of stream function, solute concentration, and temperature fields at #n2es
andt = 5 for the solidification of SbGe under normal gravity conditions and zero magnetic field.
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FLOW FIELD CONCENTRATION

solid/liquid interface

.

TEMPERATURE

FIG. 4. Calculated contours of stream function, solute concentration, and temperature fields at#mMe€s
for the solidification of SbGe under normal gravity conditions and zero magnetic field.

evolution in the flow structure as time progresses. Also, one can easily note that the w
circulating cell patterns at the right end have a marked effect on the shape of the isothe
(note the wavy nature of the isotherms) near the hot end of the cavity. Finally, it is to
emphasized that the significant variation in the dopant distribution as well as the promir
curvature ofl"; can be attributed mainly to the strong convection (coupled buoyancy a
thermocapillary flow) in the bulk liquid. The prominent distortioigfnear the free surface
is mainly the result of the high velocity gradients induced by the thermocapillary effe
This strong flow significantly retards the local solidification velocities in the upper part
the cavity.

Figure 5 presents the history of the concentratioft pduring the entire simulation. Since
the interface concentration is directly proportional to the solid concentraiige=(«C;),

B (7 7 7 [ T S

0.00 35.63 £9.38 83.14 106.89 130.65  154.40

FIG. 5. Calculated history of the solid—liquid interface concentration during the entire simulation of Shc
solidification under normal gravity and zero magnetic field conditions.
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FIG.6. Predicted solid—liquid interface location at intermediate times for the simulation of SbGe solidificatic
under normal gravity and no magnetic field.

this plot effectively shows the pattern of the solute variation obtained in the final soli
As can be clearly seen, the intricate fluid flow pattern appears to have a profound ef
on the obtained macroscopic solute distribution. Initially the heavy solute descends al
the interfacd™, and settles at the bottom of the cavity. This steady accumulation of solt
at the base continues as more solid is formed. Simultaneously, the convection in the 1
becomes stronger, and this strong convection transports and redistributes the rejected s
throughout the entire cavity. This vigorous solute convection leads to macroscopic varia
of the rejected solute, as shown in Fig. 5, and consequent inhomogeneity in the final s

The fluid flow in the melt also has significant influence on the shape, ofFigure 6
shows the calculated shapEs at various times. Note that, at early timég, is almost
vertical except very near the free surface. At later times, the macroscopic curvaitre of
becomes more prominent because of the steadily increasing strength and size of the
counter-clockwise recirculating cell.

4.2. Effects of Reduced Gravity on the Solidification Problem

For several years there has been the opportunity to grow crystals under condition
reduced gravity in space missions and ballistic rocket flights. The main reason for do
this is to obtain nearly pure diffusive transport conditions in the fluid nutrient. However, tr
is only guaranteed if not only buoyancy but also Marangoni convection is avoided. As v
be shown here, under reduced gravity conditions thermocapillary convection is a domir
forcing agent that has significant influence on various solidification parameters.

To assess the relative importance of thermocapillary versus buoyancy effects on sc
ification, a complete calculation was performed for solidification in a very low-gravit
(9 = 10~3geann) environment. This configuration corresponds to a case of almost pure th
mocapillary flow. Figures 7 and 8 show the temperature, concentration, and flow fields :
few intermediate times for the above solidification problem.

At early times ¢ < 0.5), thermal gradients on the free surface lead to surface-tensi
gradients and a thermocapillary flow develops slowly, forming a small counter-clockwi
cell around the free surface very closeltp There is almost no convection in the lower
part of the cavity at this time. As the solidification proceeds further, the strength of tt
recirculating fluid flow slowly increases, along with a steady increase in the size of the ¢



BINARY ALLOY SOLIDIFICATION PROCESSES 397

solid/liquid interface CONCENTRATION  solid/liquid interface

t=3 TEMPERATURE =6

FIG. 7. Calculated contours of stream function, solute concentration, and temperature fields at #n3es
andt = 6 for the solidification of ShGe under reduced gravigy={ 10-°ge.,) conditions and zero magnetic
field.

Aroundt = 2, the main recirculating cell fills almost the entire cavity. At the same time
a secondary cell pattern forms at the right end of the cavity. After areusd, there is
almost no change in the structure of the main cell, even though its strength steadily incre
with time (see Figs. 7 and 8).

This complex evolution of the melt flow has significant impact on various solidific
tion parameters. Figure 9 presents the history of the concentratifin daring the entire
solidification simulation. Note the significant difference between the solute pattern ¢
tained under normal and reduced gravity conditions (compare Figs. 5 and 9). The rec
for this difference lies in the distinct difference in the evolution of the melt flow in th
two cases. In the present case of almost pure thermocapillary flow, convection in the t
liquid initiates at the top free surface and slowly propagates inward. This means tha
very early times the rejected solutelgt slowly collects near the free surface and forms ¢
high solute concentration region in the upper left corner of the liquid domain. This regi
slowly moves downward into the liquid as the solidification progresses further. This ¢
plains the steady movement of the “high concentration spots” in Fig. 9 from the top to 1
bottom as time increases. In fact, there is a direct correlation between the size and ce
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FLOW FIELD solid/liquid interface CONCENTRATION

TEMPERATURE

FIG. 8. Calculated contours of stream function, solute concentration, and temperature fieldsattif@
for the solidification of SbGe under reduced gravigy=f 10~°ge4.n) conditions and zero magnetic field. Notice
the significant influence of the flow field on the solute distribution in the melt.

of the main counter-clockwise circulation cell and the height at which the solute “hic
concentration spots” are formed. At aroune- 0.5, the center of the circulation is close to
y ~ 0.8 which is about the same height at which the first concentration spot is observer
Fig. 9. With continued solidification, this cell increases in size, and the center of the cir
lation moves downward. This is consistent with the movement of the “high concentrati
spots” lower down along the y-axis in Fig. 9. By around- 2.5, the main cell has occu-
pied almost the entire cavity, and the center of the recirculating cellysra0.5, which

is again consistent with the height at which the last “high concentration spot” is observ
This flow pattern of the main recirculating cell is maintained throughout the rest of
simulation, which is in agreement with the solute pattern seen in Fig. 9 for timze8.0.
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FIG. 9. Calculated history of the solid-liquid interface concentration during the entire simulation of ShC
solidification under reduced gravitg & 10-°ge.n) conditions and zero magnetic field.
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FIG. 10. Predicted solid-liquid interface location at intermediate times for the simulation of SbGe solidific
tion under reduced gravity(= 10 -5geartn) conditions and no magnetic field.

It is quite obvious from Fig. 9 that thermocapillary melt flow plays a significant part in tt
type and scale of solidification microstructures obtained, especially under reduced gra
conditions. The complex fluid flow in the melt also has significant influence on the she
of 'y . Figure 10 shows the calculated solid—liquid interface locations at various times
is quite intriguing to note that even in the absence of buoyancy-driven convection, the «
tortion of the otherwise flal, is quite prominent. This clearly demonstrates the role the
thermocapillary convection plays on the dynamics of the solidification process.

In order to further investigate the relative influence of buoyancy-driven convection a
thermocapillary convection on the dynamics of the transient solidification process, an
tensive series of simulations were conducted under various levels of gravity. As befi
there is no imposed magnetic field. Figure 11 depicts the variety of flow patterns at ti

FIG. 11. Calculated contours of stream function at time-= 5 for the solidification of SbGe under varying
levels of gravity: (a) ®deartn, () 0.10eartn, (€) 0.010earth, and (d) 10°gean. There is no imposed magnetic field.
Notice the significant change in the structure of the flow with decreasing gravity.
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7 = 5 obtained for varying levels of gravity. As can be seen from this figure, decree
ing the magnitude of gravity significantly alters the flow pattern. Altering the strength «
gravity varies the relative influence of buoyancy and thermocapillary convection on t
solidification process. This is characterized by the dimensionless Bond number, defi
as the ratio of buoyancy to surface tension for&s=£ Rar /Ma). At normal gravity lev-
els the Bond number is of the order 10 (in the present example), and hence buoye
effects dominate over the surface-tension effects (even though the latter have a sig
cant influence on the solidification phenomena). However, at very low values of grav
(see Fig. 11d), the Bond number is close to zero. In this case the fluid flow is driven prim
ily by the surface-tension gradients on the free surface. This explains the significant cha
in the flow pattern observed in the two extreme cases. As one should expect, for intermec
gravity levels (see Figs. 11a—11c), the combined action of buoyancy and surface-ten
forces reveals a rich variety of different flow structures depending on the magnitude of
Bond number. Finally, it is to be noted that there is a steady decrease in the strengt
the flow with decrease in the magnitude of the gravity vector. This is easily understood
considering the fact that, while surface tension forces remain unaltered, the magnitud
the buoyancy force steadily decreases with gravity.

4.3. Effects of an Externally Applied Magnetic Field

Inrecent years, strong magnetic fields have been used in crystal growth of semicondu
materials in order to reduce macroscopic inhomogeneity in the crystal by suppressiol
buoyancy driven convection (see Chapter 4 in [17]). In addition, static magnetic fields h:
also been used to avoid occurrence of unsteady convection which is considered to be
origin of micro-inhomogeneity in crystals (see Chapter 7in[17]). Itis becoming increasing
evident that the homogeneity of crystals can be drastically influenced by imposed magn
fields. Furthermore, recent studies indicate that there is tremendous potential in effecti
using magnetic fields in order to control the solidification process [39]. In an attempt
explore this effect numerically, we consider the influence of an externally applied magne
field on the above solidification problem.

It is well known that application of a magnetic field damps the melt flow. I€inal.
[20] clearly demonstrated through an asymptotic analysis that the intensity of the flow
the liquid melt varies asla—2. Considering this fact and the magnitude of the Rayleigt
number in the current example problem, the effect of a horizontal magnetic field of stren
corresponding téla= 100 is first considered. This value of Hartmann number is such th
the flow is affected significantly by the applied magnetic field, but is also such that the ir
flow is not completely damped and interesting interactions of buoyancy-, thermocapillat
and electromagnetically-driven flow can be studied.

Results obtained for solidification under normal gravity conditions and a horizontal me
netic field Ha= 100) are shown in Figs. 12 and 13. As can be clearly seen by comparing
flow fields in Figs. 3 and 4 and Figs. 12 and 13, as expected the application of a sufficiel
strong magnetic field significantly damps the melt convection in the solidifying melt. Fu
thermore, one can note from Figs. 12 and 13 that fluid velocities in the vertical directi
are damped in the entire liquid domain. This fluid behavior can be easily understood fr
the fact that maximum electromagnetic damping of the fluid occurs when the velocity fie
v is oriented orthogonal to the unit magnetic field veabecause of the particular form
of the electromagnetic damping forde ¢ (v x eg) x eg).
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FIG. 12. Calculated contours of stream function, solute concentration, and temperature fields attin3es
andt = 6 for the solidification of SbGe under normal gravity conditions and a horizontally imposed exterr
magnetic field Ha= 100).

In the above results corresponding to solidification under normal gravity conditior
the Bond number is approximately 10 and hence buoyancy dominates over surface ter
forces. In order to study the influence of a externally applied magnetic field on a solidificat
problem driven mainly by surface tension forces, a similar simulation corresponding to
most zero gravity was performed. Results of the calculation are illustrated in Figs. 14 and

As can be seen from Figs. 14 and 15, the simulation under reduced gravity conditi
demonstrates that application of a magnetic field plays an entirely different role in |
absence of gravity. Since the gravity level is extremely lgn=10"5gean), the main
driving force for convection in the fluid is thermocapillary convection. Thermal gradien
on the free surface lead to a surface-tension-driven flow. Continuity leads to a “back flo
Since the magnetic field is oriented in the horizontal direction, velocity components in |
vertical direction are significantly damped. Hence, the fluid circulation tends to be as “fl;
as possible. This leads to the counter-clockwise recirculating flow structure shown in Fig.
Note that the strong fluid flow is restricted mainly to the upper part of the cavity. Immediate
below this counter-clockwise circulation, a shear-driven clockwise weak circulation as w
as a counter-clockwise weak circulation resulting from buoyancy can also be observed."
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FIG. 13. Calculated contours of stream function, solute concentration, and temperature fieldsattifie
for the solidification of SbGe under normal gravity conditions and a horizontally imposed external magnetic fi
(Ha = 100).

fluid flow structure is maintained throughout the entire solidification process, although
intensity of the convection keeps varying with time.

This peculiar behavior of the fluid flow in the melt has important consequences
the solidification problem. As illustrated in Figs. 14 and 15, the temperature contours
almost vertical except very near the free surface. The distortion of the isotherms near
free surface is a direct consequence of the melt flow in that region. The solute concentre
field is also affected by the complex fluid flow. At very early times, because of the absel
of convection, the solute rejected at the interfageis transported into the bulk liquid
mainly via diffusion. Because of the high Lewis numbke & 330) of the system, this
diffusion layer is restricted mainly to a region closeltn With continued solidification,
the melt flow develops, and the solute is carried by the convecting fluid. Since the flt
flow is such that the strong melt flow is mainly restricted to the upper part of the cavity, t
solute transport by convection is also confined mainly to this region of the cavity. The soll
transport in the bottom parts of the cavity is mainly through diffusion and the weak she
and buoyancy-driven cells. This explains the solute patterns seen in Fig. 14 correspon
to timet = 2. With further solidification, some of the solute collected in the upper regior
of the cavity is slowly transported to the bottom part as a result of the combined effects
buoyancy and shear driven convecting weak flow as well as through diffusion. Becaust
the weak nature of the shear- and buoyancy-driven cells, the solute collects at the bo
and forms the stratified layer, as seen in Figs. 14 and 15 at later times.

Figure 16 compares the solid—liquid interface solute pattern for the above two simulatit
(under normal and reduced gravity conditions) with an applied magnetic field. As expect
markedly different transport patterns in the two systems lead to entirely different form
solute segregation. As seen in Fig. 16(a), the maximum solute concentration under nol
gravity conditions is seen in the bottom part of the rectangular cavity at very early tim
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FIG. 14. Calculated contours of stream function, solute concentration, and temperature fields at+in2es
andt = 5 for the solidification of SbGe under reduced gravidy= 10~°geqn) conditions and a horizontally
imposed external magnetic fieldld = 100).

This is consistent with the transport patterns seen in Figs. 12 and 13. In contrast, Fig.
shows that the maximum solute collection occurs very near the free surface and at e
times. This trend is in conformity with the fluid flow circulation seen in Figs. 14 and 1!
which is restricted mainly to regions close to the free surface.

Distinct transport behavior of the two systems under different gravity conditions also
important implications on the shape Bf. As can be clearly seen by comparing Figs. 12
and 13 and Figs. 14 and 15, the interface macroscopic curvature is predominantly decre
under reduced gravity conditions. In order to quantify and compare the extent of distort
of I') during the two simulations, a standard deviatigns defined as

1
2
’

(18)

N
os(t) = = [s(,t) — ()]
N
i=1

wheres(i, t) is the nodal location of th&" interface node, ang(t) is the average of all
the interface nodal locations at timeFigure 17 compares this standard deviation for the
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FIG. 15. Calculated contours of stream function, solute concentration, and temperature fieldsrattifie
forthe solidification of SbGe under reduced gravgy 10-°geq.n) conditions and a horizontally imposed external
magpnetic field Ha= 100).

above simulations. As can be seen from this figure, the maximum interface distortion
the reduced gravity case is around four times less than that corresponding to the case
normal gravity conditions. Note that this marked difference in the interface macrosco
curvature is not evident without the presence of a magnetic field (compare the shpes c
in Figs. 6 and 10). Also note that the steady increase in the curvatiiteiofFig. 17 is a
direct consequence of the increasing strength of the fluid flow in the melt with time.

4.3.1. Effects of varying the strength of the applied magnetic fidtds quite evident
from the analysis presented earlier that an applied magnetic field plays a very important
in the solidification process. In an attempt to shed further light on the various interesting p
nomena, a sequence of simulations was performed under varying magnetic field stren

| T BT T TTTIE
0.00 24,52 49,05 7357 88.10 12262 14715 17167 (i) 41.38 B2TE 124.14 18552 20690 24828 2089.66
1.0

0.6

FIG. 16. Calculated history of the solid-liquid interface concentration during the entire simulation of SbC
solidification under the influence of a horizontally applied magnetic fidla & 100): (a) normal gravity conditions
and (b) reduced gravityg(= 10 5geartn) conditions.
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FIG. 17. The variation of the standard deviatieg(t) for the solidification simulation under normal and
reduced gravity § = 10-°gean) conditions. There is an imposed magnetic fiettla(= 100) in the horizontal
direction. Note the significant drop in the interface macroscopic curvature under reduced gravity conditions.

Simulations were performed under magnetic field strengths in the rargél@ < 400
applied in the horizontal direction. Calculations were performed both under normal &
under extremely low gravity levels. Such a study would help us understand the effect:
magnetic fields on the two extreme cases considered earlier—one solidification prob
driven mainly by buoyancy forces and another driven mainly by surface tension forces
the free surface.

Figure 18 illustrates the variety of melt flow patterns obtained by varying the strength
the applied magnetic field. The results correspond to tiree10. Figures 18a—18d depict
the flow patterns corresponding to solidification under normal gravity conditions, where
Figs. 18e—18h show the flow fields for the simulation under reduced gravity conditiol
In both cases, the predominant effect of increasing the magnetic field is to damp the f
flow. This is very clear by comparing the maximum stream function values at vario
magnetic field strengths (see Fig. 19). Inthe simulation case under normal gravity conditic
increasing the magnetic field strength also significantly changes the melt flow patte
When a sufficiently strong magnetic field is appliddia > 25), secondary cell formation
is suppressed, and the central circulation is seen to spread gradually over the whole c:
On a further increase in the Hartmann numbdia(x 100), the streamlines accumulate
near the free surface and the interfiigandicating the existence of strong boundary layers
on these boundaries. Increasing the magnetic field strength further reveals a very intere
fluid behavior. As seen in Fig. 18d, an entirely different flow structure evolves when t
Hartmann number is increased to a value of 200. The flow pattern shows that a str
surface-tension-driven counter-clockwise cell forms very near the free surface, where
weak buoyancy-driven recirculating cell occupies the rest of the cavity. This separat
of the convection rolls of the thermocapillary convection and of buoyant convection
triggered by the suppression of vertical velocities because of the high magnetic field. Si
the applied horizontal magnetic field damps vertical velocities but has no effect on horizol
components, the thermocapillary “back flow” occurs very close to the free surface.

In contrast to the normal gravity case, the simulations under reduced gravity conditi
show a more gradual change in the flow structure. Since the flow is mainly driven
surface-tensionforces, buoyancy plays almost norole in these simulations. Atlow Hartm
numbers Ha < 20), the thermocapillary flow develops sufficient intensity such that th
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FIG. 18. Calculated contours of stream function at time= 10 for the solidification of SbGe under the
influence of an externally imposed horizontal magnetic field. Solidification under normal gravity conditior
(a)Ha= 10; (b)Ha=50; (c)Ha= 100; (d)Ha = 200. Growth under reduced gravity & 10 °gesn) conditions:
(e)Ha=10; (f) Ha=50; (g)Ha=100; (h)Ha= 200.

recirculating cell pattern occupies almost the entire upper half of the melt domain. Howe\
with increasing values of the Hartmann number, the magnetic field significantly damps
vertical fluid motion and restricts the propagation of the surface-tension-driven fluid flc
into the inner parts of the cavity. Hence, at large Hartmann numb¢es>{ 100), the
thermocapillary flow is restricted mainly to a layer adjacent to the free liquid surface (s
Fig. 18(h)).

The significant variation in the various transport phenomena with varying magnetic fie
strengths has a tremendous impact on the solidification parameters such as the sha
the interfacel’,. For example, as can be deciphered by comparing Fig. 18a and Fig. 1
increasing the magnetic field strength increases the solidification velocities on the
surface. Furthermore, the overall interface shapes are also affected significantly. S
lar behavior is observed even for solidification under reduced gravity conditions, thou
the change in solidification growth velocities is not as prominent. As one can note fr
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FIG. 19. Maximum value of stream function as a function of the applied Hartmann number for solidificatic
simulations under normal as well as extremely low gravity levgls:(10-°ge.). The applied magnetic field is
aligned along the positive-direction.

Fig. 18h, solidification under reduced gravity and sufficiently strong magnetic field ensu
thatl", is almost vertical. Achieving a flat interface growth in the presence of melt conve
tion has been a very important objective in the processing of advanced materials [17,
In order to quantify the deviation from “flat-interface growth,” the standard deviaticn
(see Eqg. (18)) is calculated for the various simulations under normal as well as redu
gravity conditions. The results are illustrated in Fig. 20.

4.3.2. Effects of varying the orientation of the applied magnetic figbnsidering
that the electromagnetic fordeo (v x €g) x €g, it is natural to expect that altering the
magnetic field orientation will reveal dramatic modification in various transport phenomel
To characterize these effects, an extensive series of simulations of SbGe solidification \
conducted at various inclinations of the magnetic field with= 100. Simulations were
conducted at both normal and low gravity levels in order to study independently the effe
of varying the orientation of the magnetic field on the two extreme cases considered eat

Ha=10
E o Ha=50
E e Ha=100
0.05 f——— Ha =200 ]

0.06

0.04 b

FIG. 20. The variation of the standard deviatieg(t) for phase-change under the influence of a horizontally
imposed external magnetic field: (a) solidification under normal gravity conditions and different Hartmann numt
and (b) solidification under reduced gravity£ 107°gesn) conditions and different Hartmann numbers. Notice
how the interface macroscopic curvature decreases with increasing magnetic field strength.
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FIG. 21. Calculated contours of stream function at time= 10 for the solidification of SbGe under the
influence of an externally imposed magnetic figtth& 100) at various magnetic field orientations. Solidification
under normal gravity conditions: (a) along tkeaxis; (b) 30 ccw to thex-axis; (c) 60 ccw to thex-axis; and
(d) along they-axis, solidification under reduced gravity £ 107°ge4,) conditions: (e) along the-axis; (f) 30
ccw to thex-axis; (g) 60 ccw to thex-axis; and (h) along thg-axis.

Figure 21 shows the variety of flow patterns obtained for various magnetic field i
clinations at the final time = 10. Figures 21a—21d show the flow patterns obtained fc
solidification under normal gravity conditions, whereas Figs. 21e—21h show the flow p
terns for solidification under very low-gravity levelg £ 10 °geanr). In both cases of
solidification under normal and reduced gravity, increasing the inclination of the magne
field appears to damp the fluid flow. Even though the change in the intensity of convect
is significant, the more prominent effect of varying the orientation of the magnetic field
to alter drastically the structure of the fluid flow. In the case of solidification under norm
gravity conditions, this change in structure of the flow is evident only at considerably lar
differences in orientation (compare Fig. 21a and Fig. 21d). However, as can be seen f
Figs. 21e-21f), for the case of solidification under reduced gravity conditions, even sli
variation in the orientation of the magnetic field drastically alters the orientation of t
velocity vectors. This change in the flow structure affects various transport phenomena
ultimately the quality of the final crystal.
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The change in the orientation of the magnetic field does not seem to have a great influ
on the solidification growth velocities or the shapdef This is in contrast to the earlier
case of altering the strength of the magnetic field. A probable reason for this behavior cc
be the fact that the interfadg is more influenced by the strength of the convection in the
fluid and to a lesser degree by the exact structure of the flow in the melt.

5. SUMMARY AND CONCLUSIONS

The directional solidification of a binary alloy with an externally applied magneti
field was considered in this work. The proposed computational procedures were den
strated with a transient simulation of solidification of antimony-doped germanium in .
open-boat configuration. To assess the comparative effects of thermocapillary-, buoyar
and electromagnetically-driven convection, extensive series of transient calculations v
performed under varying gravity levels, magnetic field strengths, and magnetic field ori
tations.

The reported calculations demonstrate that thermocapillary convection plays animpor
role in the solidification process. Under low-gravity conditions and in the absence of ¢
external magnetic field, the melt flow develops at the free surface and slowly diffuses into
liquid. This particular phenomena leads to the local accumulation of solute and format
of various “high solute concentration spots.”

Solidification under the influence of an external magnetic field is shown to produce mz
desirable effects. For increasing strength of the magnetic field, the intensity of the ¢
vective flow decreases and is followed by a progressive change in the overall structur
the flow. Some other interesting findings include: (i) increasing Hartmann number s
presses secondary cell formation and leads to boundary-layer formation near rigid w:
(ii) the characteristics of the final flow structure strongly depends on various factors s|
as orientation and strength of the applied magnetic field and gravity level; (iii) sufficien
strong magnetic fields significantly damp the convection in the melt resulting in a verti
solidification front; and (iv) application of a sufficiently strong magnetic field can great
influence the pattern of solute distribution in the final solid.

Although restrictions related to model simplifications and computational costs limit tl
extentto which the present calculations provide a precise description of the behavior of a
eral solidification system, important trends in the various transport patterns have never
less beeninferred. In particular, the calculations reveal the manner in which thermocapill:
and buoyancy-driven convection may interact with an applied magnetic field to influer
flow development during the transient solidification of a binary alloy. In addition, the stu
reveals various features of the actual process which may be used in a successful desi
the above process for control of the microstructure and properties of the cast product. V
in this regard is currently being pursued.
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