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Directional solidification of a dilute electrically conducting binary alloy driven
by the combined action of buoyancy, surface-tension, and electromagnetic forces is
considered. A numerical methodology using a moving finite element technique is
proposed for the simulation of the above phase change process. The melt is modeled
as a Boussinesq fluid and the transient Navier–Stokes equations are solved simulta-
neously with the transient heat and solute transport equations. The location of the
advancing solid–liquid interface is numerically determined using an energy preserv-
ing weak form of the Stefan condition. The standard SUPG/PSPG method for the
simulation of incompressible fluid flow is here extended to flows driven by the combi-
nation of buoyancy, surface tension, and electromagnetic forces. A reference problem
of directional solidification of a dilute germanium alloy in a horizontal open-boat
configuration is considered. The relative influence of thermocapillary convection and
buoyancy-driven convection on the solidification process is investigated by varying
the Bond number. Thermocapillary convection is shown to have a significant in-
fluence on various solidification parameters, such as the shape of the solid–liquid
interface and the solute segregation, especially under low gravity conditions. The
influence of an external magnetic field on the reference solidification problem is in-
vestigated both in a normal and a reduced gravity environment. It is demonstrated that
the application of an appropriate strong magnetic field significantly damps the melt
flow and improves the solute segregation pattern. The relative influence of an external
magnetic field on the solidification process is also studied by independently varying
the orientation and magnitude of the applied magnetic field.c© 2001 Academic Press
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1. INTRODUCTION

Convection in the bulk liquid is an important parameter in crystal growth from the melt.
A typical driving force for convection in the melt is the buoyancy force induced by thermal
and solutal gradients in the liquid. Another driving force for convection, besides buoyancy,
is the surface-tension gradient that results from temperature or concentration gradients on a
free surface. Surface tension typically decreases with increasing temperature. In a free melt
surface with a temperature gradient, surface tension forces drive the flow from regions of
low surface tension (hot) to areas of high surface tension (cold). Surface tension forces are
balanced by viscous shear which transfers momentum to neighboring liquid layers because
of fluid viscosity. Similar to the buoyancy driven flow, continuity causes the development of
a bulk flow in the whole melt volume. This convective motion is referred to as Marangoni or
thermocapillary convection and occurs if free melt surfaces exist in the growth configuration
[1, 2].

The study of Marangoni convection in crystal growth from the melt has proven to be
of particular interest with respect to its influence on the distribution of impurities in the
obtained crystal structure [3–5]. The role of Marangoni convection becomes quite dominant
in reduced-gravity environments. Even under normal gravity, the thermocapillary effect
can be very important in the overall transport pattern. A review of various numerical and
experimental studies of the interaction of the surface-tension-driven flow and the buoyancy-
driven flow in crystal growth melts can be found in [3, 6].

Studies of surface tension effects have concentrated largely on flows without phase change
[7–11]. Exceptions include the studies reported in [12–15]. In [12] and [13], the melting
and solidification of pure materials was considered, during which liquid convection was
driven by a combination of buoyancy and surface-tension forces. In [14, 15], the authors
considered the effects of thermo/diffusocapillary convection on the solidification of a binary
aqueous solution in a rectangular cavity using a single region (continuum) formulation. Their
study showed that surface-tension effects influence significantly the fluid flow and interface
morphology during the early stages of the solidification process. It was also observed that
the recirculating flow in the melt is stronger, which in turn significantly alters the interface
shape. The action of thermocapillary convection on crystal growth processes is generally
undesirable because the transition to unsteady behavior is hard to control [16].

Application of magnetic fields is known to stabilize both flow and temperature oscil-
lations in the melt (see Chapters 4 and 7 in [17]) and thereby represents a promising
opportunity to obtain an improved crystal quality. The effects of a magnetic field on melt
convection have been previously investigated by several authors [18–23]. The effects of a
strong vertical magnetic field on convection and segregation in the vertical Bridgman crys-
tal growth process were considered in [20]. More recently, Ben Hadidet al. [21–23] have
studied the influence of an external magnetic field on convection in a horizontal Bridgman
configuration. In [21], an extensive numerical study is presented of buoyancy- and surface-
tension-driven convection in a horizontal rectangular cavity under the action of a constant
magnetic field. Results of a similar study on a three-dimensional parallelepiped domain are
presented in [22]. These formulations dealt purely with the effects of a magnetic field on
the fluid flow and did not include the effects of phase-change. In [23], a numerical study
was presented of macrosegregation in a horizontal Bridgman configuration under various
fluid flow conditions and with the assumption of a planar solid–liquid interface moving at
a constant velocity.
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In this paper, the complex interaction between solidification and convection for a dilute
binary fluid that is crystallized in a rectangular cavity with an open boundary is investigated.
A broad range of responses are investigated and reported in a systematic manner by varying
the conditions of the relative strength of the driving physical mechanisms under both nor-
mal and reduced gravity levels. In the present work, the SUPG/PSPG stabilized FEM for
incompressible flows [24, 25] has been extended to a front tracking moving finite element
framework appropriate for the analysis of solidification processes. The sharp solid–liquid
interface model adopted here is limited to systems with a thin mushy layer and to crystal
growth processes with a low growth rate [26]. Even though the applicability of this model
is limited, it results in a mathematically tractable framework that can be used to provide a
detailed insight into the complex interaction of heat, mass, and momentum transport in the
solidification system [27–30]. For materials for which this assumption of a thin mushy zone
is not applicable, sharp interface models have been used to pose optimal control problems
in which the interface stability is enforced explicitly by a proper selection of the process
conditions (e.g., by a boundary heat flux design [31, 32]).

The plan of the paper is as follows. In the following section, the physical problem and the
governing equations are defined. Section 3 provides a brief outline of the various solution
methods employed to solve the numerical model. Section 4 presents the results of the
numerical experiments, wherein the various aspects of the predicted solutions and their
implications on the final crystallized solid are discussed. Finally, in Section 5, conclusions
are presented based on the various numerical experiments.

2. DIRECTIONAL SOLIDIFICATION OF A BINARY ALLOY IN AN OPEN-BOAT

CONFIGURATION IN THE PRESENCE OF A MAGNETIC FIELD

Here, a two-dimensional, rectangular moldÄ is considered filled with a dilute, incom-
pressible, electrically conducting binary alloy which is initially liquid and uniform in tem-
perature and composition (Fig. 1). The top boundary of the box is “free” and subject to
temperature induced surface-tension gradients. At timet = 0+, the temperature of the left
vertical boundary0os is instantaneously dropped and maintained below the freezing tem-
perature corresponding to the bulk concentration of the melt, so that solidification of the

FIG. 1. Schematic of the binary alloy solidification problem in an open-boat configuration under the influence
of an externally applied magnetic field.
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alloy immediately commences at this “cold” boundary. The motion of the melt is determined
by the combined action of buoyancy, surface-tension, and electromagnetic forces.

Let us denote the solid region byÄs, the liquid region byÄl , and the solid–liquid interface
as0I . The regionÄl has a boundary0l which consists of0I , 0ol (the mold wall on the
liquid side),0bl (the bottom boundary of the liquid domain), and0tl (the top boundary of
the liquid domain). SimilarlyÄs has boundary0s, which consists of0I , 0os, 0bs, and0ts.

In the solidification system considered in this work, the following assumptions are intro-
duced regarding the transport of heat, mass, and momentum:

• The thermal and physical properties are constant within each phase.
• The solid and liquid phases are in local thermodynamic equilibrium.
• The melt flow is assumed to be a laminar flow induced by thermal, solutal, and surface-

tension gradients.
• The Boussinesq approximation can be invoked.
• The solute diffusion in the solid is negligible compared to that in the melt, i.e.,

Ds/Dl → 0 (Ds andDl , respectively, are the solid and liquid mass diffusivities).
• Velocities resulting from density change upon phase change are negligible.
• The free-surface deformation is negligible.
• Capillary undercooling resulting from the local curvature of the phase boundary

(Gibbs–Thompson effect) is negligible.
• A macroscopically stable solid–liquid interface exists between the solid and the liquid

regions.

The above assumptions with the exception of the last three are generally valid for solid-
ification systems with dilute concentration levels, moderate temperature differences, and
a Newtonian melt. The assumption that the melt free surface deformation is negligible is
strictly valid only at low capillary numbers. This is generally true for metals and semi-
conductor melts [10]. The Gibbs–Thompson effect is neglected as it is usually important
only on very small scales [6, 33]. Finally, the assumption that a sharp solid–liquid interface
exists between the solid and liquid domains is quite debatable. Once morphological insta-
bility occurs, the perturbations continue to grow to form a two-phase mushy zone in which
dendrites are bathed in interstitial melt. Many theoretical models for simulating dendritic
solidification processes incorporating a mushy model have been proposed in the recent
years [34]. In this paper, however, the simplified model of a sharp solid–liquid interface is
adopted to allow us to concentrate on examining the complex interactions of heat, mass,
and momentum transport in the solidification system. A number of computational studies
have been conducted using the sharp interface model, and the results were found to be on
an excellent qualitative agreement with experiments [27–29].

The governing equations for the binary alloy solidification system are now introduced.
Let L be a characteristic length of the domain,ρ the density,k the thermal conductivity,α
(α ≡ k/ρc) the thermal diffusivity,D the solute diffusivity,σe the electrical conductivity,
andν the kinematic viscosity of the liquid melt. All fields and properties refer to the liquid
domain unless denoted otherwise. The characteristic scale for time is taken asL2/α and for
velocity asα/L. The temperatureθ is defined asθ ≡ (T − To)/1T , whereT , To, and1T
are the temperature, reference temperature, and reference temperature drop, respectively.
Likewise, the dimensionless concentration fieldc is defined as(ĉ− co)/1c, whereĉ, co,
and1c are the concentration, reference concentration, and reference concentration drop,
respectively. The characteristic scale for the electric potentialφ is taken asα|Bo|, whereBo
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is the externally applied magnetic field. Since only dimensionless quantities will be used
in the rest of this paper, the symbolφ is used hereafter to denote the dimensionless electric
potential.

The basic equations used in the simulation of the melt flow are the incompressible
Navier–Stokes equations, including the Lorentz force [35]. The Boussinesq approximation
is also used for defining buoyancy. The other main equations governing the fluid flow in the
liquid domain are the energy equation and the solute transport equation. These equations
are written as

∇ · v= 0, (1)

∂v
∂t
+ v · ∇v= −∇ p+ Pr∇2v− [RaT Prθl − RacPrc]eg

+ Ha2Pr [−∇φ + v× eB] × eB, (2)

∂θl

∂t
+ v · ∇θl = ∇2θl (3)

∂c

∂t
+ v · ∇c = Le−1∇2c, (4)

where the governing dimensionless groups are the Prandtl number (Pr ≡ ν/α), the Lewis
number (Le≡ α/D), the thermal Rayleigh number (RaT ≡ gβT1T L3/να), the solutal
Rayleigh number (Rac ≡ gβc1cL3/να), and the Hartmann number (Ha≡ ( σe

ρν
)1/2BoL),

whereg is the gravity constant,βT is the thermal coefficient of expansion, andβc is the
solutal coefficient of expansion. Here,eg andeB denote unit vectors in the directions of the
gravity and magnetic field vectors, respectively.

Heat transfer in the solid is by conduction and is written as

∂θs

∂t
= Rα∇2θs, (5)

whereRα ≡ αs/αl is the ratio of the thermal diffusivities.
The temperature at0I is set by the binary equilibrium phase diagram as

θ = θm +mc, (6)

where the dimensionless slopem of the liquidus line is given asm= mliquidus1c/1T ,
mliquidus is the dimensional slope of the liquidus, andθm is the dimensionless melting
temperature corresponding to the reference concentration.

The energy and solute balances at0I take the form

Rk
∂θs

∂n
− ∂θl

∂n
= Ste−1v f · n, (7)

∂c

∂n
= Le (κ − 1)v f · n (c+ δ), (8)

where Rk ≡ ks/kl is the ratio of the thermal conductivities of the solid and liquid,
Ste≡ (Cp1T)/L H is the Stefan number,κ is the partition coefficient, andδ ≡ co/1c
is the ratio of the reference concentrationco and reference concentration drop1c. In the



BINARY ALLOY SOLIDIFICATION PROCESSES 389

above definition,Cp is the heat capacity of the liquid melt, andL H is the latent heat of
solidification.

A no-slip and no-penetration boundary condition on the velocity field is imposed on all
the liquid boundaries other than the upper free surface (Fig. 1). The surface tension on the
free surface is approximated asσ = σo[1− γ (T − To)], whereγ = −(1/σo)(∂σ/∂T). In
the present work, the variation of the surface tension with solute concentration is neglected
as only minute amounts of solute are considered and hence no appreciable change in sur-
face tension occurs as a result of concentration variation [7]. The hydrodynamic boundary
condition on the free surface0tl is expressed as

∇(v · t) · n = Ma(∇θ · t), (9)

where t is a tangent vector to the free surface, andMa ≡ (∂σ/∂T)1T L/(ρνα) is the
thermal Marangoni number. Equation (9) is used as a Neumann boundary condition in the
solution of the flow equations once the temperature field has been computed. As mentioned
earlier, the free-surface deformation is neglected and a no-penetration boundary condition
is imposed on the free surface.

It is assumed that adiabatic conditions are maintained on0bl ∪ 0tl . The equilibrium
condition (see Eq. (6)) imposes a Dirichlet boundary condition on0I . A problem dependent
flux/temperature condition on the outer liquid boundary0ol completes the definition of
the thermal problem defined onÄl . The solutal boundary conditions are provided by the
impermeable wall condition on the outer boundaries and a flux condition determined by the
solute conservation condition (see Eq. (8)) on0I . The electric potential functionφ(x, t) is
governed by an insulating wall condition on the boundary0l .

In the solid phaseÄs, the equilibrium condition (Eq. (6)) on0I , the problem-dependent
flux/temperature condition on0os, and the adiabatic conditions on0ts ∪ 0bs (Fig. 1) provide
the required boundary conditions for the solution of the heat transport problem. Finally,
note that the shape and position of0I are integral parts of the solution of the nonlinear
solidification problem.

3. SOLUTION METHODOLOGY AND MODEL VALIDATION

The stabilized finite element formulation using an equal-order velocity-pressure interpo-
lation as proposed by Tezduyaret al. [24, 25] is adopted in this work for the fluid flow sub-
problem. This method achieves stabilization by adding two terms to the standard Galerkin
formulation of the problem. The first term is the well-known SUPG (streamline-upwind
Petrov–Galerkin) term. The second stabilization term is the PSPG (pressure-stabilizing/
Petrov–Galerkin) term, which was introduced in [24, 25] to accommodate equal-order-
interpolation velocity-pressure elements. In this work, the above analysis for the simulation
of incompressible flows is extended to the simulation of flows driven by the combined action
of buoyancy, surface tension and electromagnetic forces. This FEM fluid flow formulation
is briefly addressed in the following discussion.

Let E denote the set of elements resulting from the finite element discretization of the
computational domainÄl into subdomainsÄe

l , e= 1, 2, 3, ....,nel, wherenel is the number
of elements. Associated with this discretization, we define the following finite element
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interpolation and variational function spaces for the velocity and pressure:

Sh
v = {vh | vh ∈ [H1h(Ä)]nsd, vh ≡ 0 on 0l − 0tl , vh · n = 0 on 0tl } (10)

Vh
v = {wh | wh ∈ [H1h(Ä)]nsd, wh ≡ 0 on 0l − 0tl , wh · n = 0 on 0tl } (11)

Sh
p = Vh

p = {q | q ∈ H1h} (12)

Using standard notation [24, 25], we now write the stabilized Galerkin formulation of the
flow equations as follows. Findvh ∈ Sh

v and ph ∈ Sh
p such that

∫
Äl

wh ·
(
∂vh

∂t
+ vh · ∇vh

)
dÄ+

∫
Äl

ε(wh) : σ(ph, vh) dÄ+
∫
Äl

qh∇ · vh dÄ

+ RaT Pr
∫
Äl

wh ·
(
θh − Rac

RaT
ch

)
eg+ Ha2Pr

∫
Äl

wh · [∇φh − vh × eB] × eB dÄ

+
nel∑

e=1

∫
Äe

l

(δh + εh) ·
(
∂vh

∂t
+ vh · ∇vh −∇ · σ(ph, vh)+ Pr RaTθ

heg− Pr Racc
heg

+ Ha2Pr [∇φh − vh × eB] × eB)dÄ−
∫
0tl

wh · (σ h · n) d0 = 0,

∀wh ∈ Vh
v , ∀qh ∈ Vh

p . (13)

In the above formulation, two stabilizing terms have been added to the standard Galerkin
formulation; the one withδh is the SUPG term and the one withεh is the PSPG term. More
details on the form of these stabilizing terms can be obtained from [24, 25]. The above fluid
flow formulation for coupled buoyancy, surface tension, and electromagnetically driven
flows is combined with an SUPG formulation for the heat and solute transport equations
with discontinuous weighting functions and a classical Galerkin formulation for the electric
potential equation.

After spatial discretization of the variational forms of the governing equations, the fol-
lowing system of nonlinear ordinary differential equations is obtained for the solution of
the velocity fieldv, the pressurep, the temperature fieldθ , and the electric potential fieldφ
in the liquid domain:

[M̂ + M̂ δ]{θ̇} + [N̂(v)+ N̂δ(v)]{θ} + [K̂ + K̂ δ]{θ} = {F̂} (14)

[M +M δ]{v̇} + [N(v)+ Nδ(v)]{v} + [K + K δ]{v} − [G+Gδ]{p} + [D+ Dδ]{v}

+ [B+ Bδ]
{
θ − Rac

RaT
c

}
+ [H + Hδ]{φ} + [S]{θ} = F+ Fδ (15)

GT {v} +M ε{v̇} + Nε(v){v} + K ε{v} +Gε{p} + Dε{v}

+Bε

{
θ − Rac

RaT
c

}
+ Hε{φ} = E+ Eδ (16)

[K̃ ]{φ} = [P̃]{v}. (17)

In the above equations,{v} denotes the vector of nodal values of the velocity fieldv, {v̇}
the time derivative of{v}, {p} the vector of nodal values of the pressure fieldp, {θ} the
vector of nodal values of the temperature fieldθ , {θ̇} the time derivative of{θ}, and{φ}
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the vector of nodal values of the electric potential fieldφ. The matricesM , N(v), K , andG
(Eqs. (15) and (16)) are derived, respectively, from the time-dependent, advective, viscous,
and pressure terms. The matrixB in these equations is derived from the buoyancy term,
whereas the matricesD and H are derived from the electromagnetic contributions. The
matrixS is obtained from the surface-tension term. The subscriptsδ andε are used here to
identify the SUPG and PSPG contributions, respectively. Similar notation is used for the
discrete heat equation in the melt (Eq. (14)). The discrete equations for the solute transport
equation in the melt and heat transport in the solid are similar in form to the discrete melt
temperature equation shown in Eq. (14).

A moving finite element methodology is used together with an energy preserving weak
form of the Stefan condition to allow tracking of the interface0I [26]. The extra convection
terms resulting from the mesh motion are implicitly incorporated into the nonlinear matrices
N̂, N̂δ, N, Nδ, andNε in the discrete forms of the transport Eqs. (14)–(16).

The time integration of the heat and solute transport equations is achieved using a
predictor–corrector scheme [26]. A one-step generalized trapezoidal rule (T1 formulation
of [24]) is used for the time integration of the flow equations. The electric potential equation
yields the linear system of Eq. (17), which is solved by a standard procedure. Although
the discrete equations for the various transport problems are coupled, the solution of these
equations at each time step is achieved in a decoupled fashion. The finite element grids
of the solid and liquid domains are first updated using the calculated front velocity at the
earlier time step. The solution of the heat and solute transport equations in the melt are
obtained next, which is followed by the solution of the flow equations. This is followed
by the solution of the electric potential equation. Next, the heat transport problem in the
solid domain is solved. Finally, the weak form of the Stefan condition is solved to obtain
the interface velocity field, which is used to update the finite element grids to the next time
step. This solution technique has proven to be accurate and computationally efficient for
the various numerical example problems tested.

Mass lumping and preconditioning were employed here to improve the efficiency of the
method and to ensure smooth solutions. At each time step of the flow equations, a system
of linear equationsAx= b needs to be solved. In evolution problems, such as the one under
consideration, the stiffness matrixA evolves very slowly. Thus, the stiffness matrixÃ cal-
culated a few time steps earlier can be considered as a close approximation to the current
stiffness matrixA, and hence can be employed as a very good preconditioner. Using this idea
as the basis, an LU-factorization of the stiffness matrixÃ is calculated at regular time steps
and is employed as a preconditioner in solving the flow equations. The period after which
the LU-factorization is performed is a compromise between the computational cost and the
improvement in the condition numberκ(A) of the resulting system. A preconditioned sta-
bilized bi-conjugate gradients method (BICGSTAB) [36] for the solution of nonsymmetric
system of linear equations is used for the solution of the resulting linear system at each time
step. Further details on this preconditioning algorithm are available in a recent technical
report [37], wherein validation and computational performance studies are presented for
several benchmark incompressible flow problems using this solution technique. In addition
to confirming the accuracy of the solution procedures, the reported studies demonstrated
the effectiveness of the preconditioning algorithm in reducing the CPU costs by a factor as
high as 20 [37].

The entire implementation of the various transport equations was achieved using an
object-oriented framework [26]. In addition to the validation studies reported above, the



392 SAMPATH AND ZABARAS

moving FEM formulation and numerical solution procedures have been successfully ver-
ified through comparisons (e.g., calculated temperature, flow fields, and the solid–liquid
interface positions at various times) with reported numerical results for the solidification of
a pure substance [13]. The numerical accuracy has also been confirmed through extensive
comparisons with existing numerical results obtained using finite differences techniques for
coupled thermocapillary and buoyant flow in a rectangular cavity [2, 10, 21]. The additional
effects of an externally applied magnetic field have also been studied and compared with
the results reported in [21]. The obtained computational results were very satisfactory and
confirmed the accuracy of the developed solution procedures.

In the example problems reported in this paper, for all subproblems except the flow
equations, a stopping tolerance of 1.0E−06 was used to terminate the solution of the
nonlinear equations. The solution of the flow equations was stopped after two passes per
time step, as suggested in [24]. Computations were carried out on a IBM RS6000 work
station. The overall cost of solving the various transport equations per time step was about
9 CPU seconds. The entire computations spanned over 40,000 time steps.

4. SOLIDIFICATION OF ANTIMONY-DOPED GERMANIUM

IN AN OPEN-BOAT CONFIGURATION

4.1. A Reference Binary Alloy Solidification Problem

A rectangular cavity is considered with an open free surface of dimensions 2 cm×1 cm
initially filled with molten antimony-doped germanium at 40◦C overheat. The right-hand
side vertical mold wall0ol is maintained at the initial temperature, whereas the left vertical
mold wall0os is suddenly cooled to a temperature 40◦C below the melting temperature of
pure germanium and maintained at that temperature fort > 0. The solidification process
starts and takes place under standard laboratory conditions (normal gravity, no magnetic
field). The thermophysical properties were compiled from References [16] and [38] and
are listed in Table I. It is assumed that the small concentrations of antimony do not lead
to solutal-driven convection. Similar assumptions were employed in [38] for the growth of
dilute gallium-doped germanium. The dimensionless parameters are summarized in Table II.

TABLE I

Thermophysical Properties of Germanium

Thermal conductivity of the melt Kl (W/oCcm) 0.39
Thermal conductivity of the solid Ks (W/oCcm) 0.17
Density of the melt ρl (g/cm3) 5.5
Density of the solid ρs (g/cm3) 5.5
Specific heat of the melt Cp,l (J/oC · g) 0.39
Specific heat of the solid Cp,s (J/oC · g) 0.39
Melting temperature Tm (

oC) 937.4
Kinematic viscosity ν(cm2/s) 0.0013
Heat of solidification L H (J/g) 460
Surface tension coefficient dσ/dT (N/mK) −0.26× 10−4

Thermal expansion coefficient βT (
oC−1) 5.0× 10−4

Mass diffusivity of dopant D (cm2/s) 5.5× 10−4

Equilibrium partition coefficient κ 0.003
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TABLE II

Dimensionless Groups and Their Characteristic Values

for Modeling Antimony-Doped Germanium Growth in an

Open-Boat Configuration

Prandtl number Pr 0.007
Thermal Rayleigh number RaT 82931
Solutal Rayleigh number Rac 0.0
Lewis number Le 330.0
Marangoni number Ma −8× 103

Hartmann number Ha 0.0–400.0
Stefan number Ste 0.034
Heat conductivity ratio Rk 0.4358
Heat diffusivity ratio Rα 0.4358
Slope of the liquidus m ≈0

In problems dealing with surface-tension-driven flows, grid selection is influenced by the
strength of the fluid flow near the free surface and, in particular, by the large velocity and
temperature gradients characteristic of the singular region in the cold corner. For Marangoni
numbers associated with most flows, an extremely fine grid is required to resolve the fine
details of the corner flow precisely [14]. Moreover, in the transient solidification of a binary
mixture, this problem is aggravated because of the presence of the moving solid–liquid
interface. Hence, the finite element mesh was biased toward the free surface in order to
capture the essential details of the wall shear layers. The finite element grid consisted of 3200
bilinear elements and 3321 nodes and is shown in Fig. 2. Through several computational
tests with various grid sizes, it was determined that the above discretization was sufficient
to capture the macroscopic aspects of the fluid flow, solute, and temperature patterns that
are the main focus of this work. Figure 2 also provides the imposed boundary conditions
used in the various simulations.

Because of the fact that the time scale associated with cell formation is much less than
that associated with the solidification process and because of the presence of large velocity

FIG. 2. Sample finite element mesh at timeτ = 10 for the solid and liquid domains.
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gradients near the free surface, it was necessary to use small time steps in the calculation
(1τ = 2.5× 10−4). The simulations were terminated atτ = 10 when the flow field had
almost achieved a steady state pattern.

The simulation shows that at early times the thermal gradients in the originally quiescent
melt cause surface-tension gradients on the free surface and density gradients in the bulk
liquid. This leads to combined buoyancy and thermocapillary convection in the fluid. The
fluid velocities are maximum at the top free surface in regions close to the interface0I .
Continuity of the fluid flow slowly leads to counter-clockwise circulation of the melt filling
the entire cavity. As the solidification process proceeds further, the interface0I starts to
curve, with more solid volume formed at the bottom compared to the top part of the cavity.
At aroundτ = 1, two distinct weak recirculating cells form near the hot end of the cavity
(1.7< x < 2.0), in addition to the main (strong) counter-clockwise recirculating cell filling
most of the cavity. With continued solidification, the cells slowly merge forming a variety
of weak cell patterns near the hot end. The main recirculating cell maintains its flow pattern,
however, slowly increasing the strength of the circulation. Figure 3 shows the streamlines,
isopleths (iso-composition lines) and isotherms at intermediate timesτ = 2 andτ = 5,
whereas Fig. 4 shows the corresponding fields at the final timeτ = 10. Note the significant

FIG. 3. Calculated contours of stream function, solute concentration, and temperature fields at timesτ = 2
andτ = 5 for the solidification of SbGe under normal gravity conditions and zero magnetic field.
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FIG. 4. Calculated contours of stream function, solute concentration, and temperature fields at timesτ = 10
for the solidification of SbGe under normal gravity conditions and zero magnetic field.

evolution in the flow structure as time progresses. Also, one can easily note that the weak
circulating cell patterns at the right end have a marked effect on the shape of the isotherms
(note the wavy nature of the isotherms) near the hot end of the cavity. Finally, it is to be
emphasized that the significant variation in the dopant distribution as well as the prominent
curvature of0I can be attributed mainly to the strong convection (coupled buoyancy and
thermocapillary flow) in the bulk liquid. The prominent distortion of0I near the free surface
is mainly the result of the high velocity gradients induced by the thermocapillary effect.
This strong flow significantly retards the local solidification velocities in the upper part of
the cavity.

Figure 5 presents the history of the concentration on0I during the entire simulation. Since
the interface concentration is directly proportional to the solid concentration (Cs = κCl ),

FIG. 5. Calculated history of the solid–liquid interface concentration during the entire simulation of SbGe
solidification under normal gravity and zero magnetic field conditions.
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FIG. 6. Predicted solid–liquid interface location at intermediate times for the simulation of SbGe solidification
under normal gravity and no magnetic field.

this plot effectively shows the pattern of the solute variation obtained in the final solid.
As can be clearly seen, the intricate fluid flow pattern appears to have a profound effect
on the obtained macroscopic solute distribution. Initially the heavy solute descends along
the interface0I and settles at the bottom of the cavity. This steady accumulation of solute
at the base continues as more solid is formed. Simultaneously, the convection in the melt
becomes stronger, and this strong convection transports and redistributes the rejected solute
throughout the entire cavity. This vigorous solute convection leads to macroscopic variation
of the rejected solute, as shown in Fig. 5, and consequent inhomogeneity in the final solid.

The fluid flow in the melt also has significant influence on the shape of0I . Figure 6
shows the calculated shapes0I at various times. Note that, at early times,0I is almost
vertical except very near the free surface. At later times, the macroscopic curvature of0I

becomes more prominent because of the steadily increasing strength and size of the main
counter-clockwise recirculating cell.

4.2. Effects of Reduced Gravity on the Solidification Problem

For several years there has been the opportunity to grow crystals under conditions of
reduced gravity in space missions and ballistic rocket flights. The main reason for doing
this is to obtain nearly pure diffusive transport conditions in the fluid nutrient. However, this
is only guaranteed if not only buoyancy but also Marangoni convection is avoided. As will
be shown here, under reduced gravity conditions thermocapillary convection is a dominant
forcing agent that has significant influence on various solidification parameters.

To assess the relative importance of thermocapillary versus buoyancy effects on solid-
ification, a complete calculation was performed for solidification in a very low-gravity
(g = 10−5gearth) environment. This configuration corresponds to a case of almost pure ther-
mocapillary flow. Figures 7 and 8 show the temperature, concentration, and flow fields at a
few intermediate times for the above solidification problem.

At early times (τ < 0.5), thermal gradients on the free surface lead to surface-tension
gradients and a thermocapillary flow develops slowly, forming a small counter-clockwise
cell around the free surface very close to0I . There is almost no convection in the lower
part of the cavity at this time. As the solidification proceeds further, the strength of this
recirculating fluid flow slowly increases, along with a steady increase in the size of the cell.
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FIG. 7. Calculated contours of stream function, solute concentration, and temperature fields at timesτ = 3
andτ = 6 for the solidification of SbGe under reduced gravity (g = 10−5gearth) conditions and zero magnetic
field.

Aroundτ = 2, the main recirculating cell fills almost the entire cavity. At the same time,
a secondary cell pattern forms at the right end of the cavity. After aroundτ = 3, there is
almost no change in the structure of the main cell, even though its strength steadily increases
with time (see Figs. 7 and 8).

This complex evolution of the melt flow has significant impact on various solidifica-
tion parameters. Figure 9 presents the history of the concentration on0I during the entire
solidification simulation. Note the significant difference between the solute pattern ob-
tained under normal and reduced gravity conditions (compare Figs. 5 and 9). The reason
for this difference lies in the distinct difference in the evolution of the melt flow in the
two cases. In the present case of almost pure thermocapillary flow, convection in the bulk
liquid initiates at the top free surface and slowly propagates inward. This means that at
very early times the rejected solute at0I slowly collects near the free surface and forms a
high solute concentration region in the upper left corner of the liquid domain. This region
slowly moves downward into the liquid as the solidification progresses further. This ex-
plains the steady movement of the “high concentration spots” in Fig. 9 from the top to the
bottom as time increases. In fact, there is a direct correlation between the size and center
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FIG. 8. Calculated contours of stream function, solute concentration, and temperature fields at timeτ = 10
for the solidification of SbGe under reduced gravity (g = 10−5gearth) conditions and zero magnetic field. Notice
the significant influence of the flow field on the solute distribution in the melt.

of the main counter-clockwise circulation cell and the height at which the solute “high
concentration spots” are formed. At aroundτ = 0.5, the center of the circulation is close to
y ≈ 0.8 which is about the same height at which the first concentration spot is observed in
Fig. 9. With continued solidification, this cell increases in size, and the center of the circu-
lation moves downward. This is consistent with the movement of the “high concentration
spots” lower down along the y-axis in Fig. 9. By aroundτ ∼ 2.5, the main cell has occu-
pied almost the entire cavity, and the center of the recirculating cell is aty ≈ 0.5, which
is again consistent with the height at which the last “high concentration spot” is observed.
This flow pattern of the main recirculating cell is maintained throughout the rest of the
simulation, which is in agreement with the solute pattern seen in Fig. 9 for timesτ > 3.0.

FIG. 9. Calculated history of the solid–liquid interface concentration during the entire simulation of SbGe
solidification under reduced gravity (g = 10−5gearth) conditions and zero magnetic field.
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FIG. 10. Predicted solid–liquid interface location at intermediate times for the simulation of SbGe solidifica-
tion under reduced gravity (g = 10−5gearth) conditions and no magnetic field.

It is quite obvious from Fig. 9 that thermocapillary melt flow plays a significant part in the
type and scale of solidification microstructures obtained, especially under reduced gravity
conditions. The complex fluid flow in the melt also has significant influence on the shape
of 0I . Figure 10 shows the calculated solid–liquid interface locations at various times. It
is quite intriguing to note that even in the absence of buoyancy-driven convection, the dis-
tortion of the otherwise flat0I is quite prominent. This clearly demonstrates the role that
thermocapillary convection plays on the dynamics of the solidification process.

In order to further investigate the relative influence of buoyancy-driven convection and
thermocapillary convection on the dynamics of the transient solidification process, an ex-
tensive series of simulations were conducted under various levels of gravity. As before,
there is no imposed magnetic field. Figure 11 depicts the variety of flow patterns at time

FIG. 11. Calculated contours of stream function at timeτ = 5 for the solidification of SbGe under varying
levels of gravity: (a) 0.5gearth, (b) 0.1gearth, (c) 0.01gearth, and (d) 10−5gearth. There is no imposed magnetic field.
Notice the significant change in the structure of the flow with decreasing gravity.
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τ = 5 obtained for varying levels of gravity. As can be seen from this figure, decreas-
ing the magnitude of gravity significantly alters the flow pattern. Altering the strength of
gravity varies the relative influence of buoyancy and thermocapillary convection on the
solidification process. This is characterized by the dimensionless Bond number, defined
as the ratio of buoyancy to surface tension forces (Bo≡ RaT/Ma). At normal gravity lev-
els the Bond number is of the order 10 (in the present example), and hence buoyancy
effects dominate over the surface-tension effects (even though the latter have a signifi-
cant influence on the solidification phenomena). However, at very low values of gravity
(see Fig. 11d), the Bond number is close to zero. In this case the fluid flow is driven primar-
ily by the surface-tension gradients on the free surface. This explains the significant change
in the flow pattern observed in the two extreme cases. As one should expect, for intermediate
gravity levels (see Figs. 11a–11c), the combined action of buoyancy and surface-tension
forces reveals a rich variety of different flow structures depending on the magnitude of the
Bond number. Finally, it is to be noted that there is a steady decrease in the strength of
the flow with decrease in the magnitude of the gravity vector. This is easily understood by
considering the fact that, while surface tension forces remain unaltered, the magnitude of
the buoyancy force steadily decreases with gravity.

4.3. Effects of an Externally Applied Magnetic Field

In recent years, strong magnetic fields have been used in crystal growth of semiconductor
materials in order to reduce macroscopic inhomogeneity in the crystal by suppression of
buoyancy driven convection (see Chapter 4 in [17]). In addition, static magnetic fields have
also been used to avoid occurrence of unsteady convection which is considered to be the
origin of micro-inhomogeneity in crystals (see Chapter 7 in [17]). It is becoming increasingly
evident that the homogeneity of crystals can be drastically influenced by imposed magnetic
fields. Furthermore, recent studies indicate that there is tremendous potential in effectively
using magnetic fields in order to control the solidification process [39]. In an attempt to
explore this effect numerically, we consider the influence of an externally applied magnetic
field on the above solidification problem.

It is well known that application of a magnetic field damps the melt flow. Kimet al.
[20] clearly demonstrated through an asymptotic analysis that the intensity of the flow in
the liquid melt varies asHa−2. Considering this fact and the magnitude of the Rayleigh
number in the current example problem, the effect of a horizontal magnetic field of strength
corresponding toHa= 100 is first considered. This value of Hartmann number is such that
the flow is affected significantly by the applied magnetic field, but is also such that the melt
flow is not completely damped and interesting interactions of buoyancy-, thermocapillary-,
and electromagnetically-driven flow can be studied.

Results obtained for solidification under normal gravity conditions and a horizontal mag-
netic field (Ha= 100) are shown in Figs. 12 and 13. As can be clearly seen by comparing the
flow fields in Figs. 3 and 4 and Figs. 12 and 13, as expected the application of a sufficiently
strong magnetic field significantly damps the melt convection in the solidifying melt. Fur-
thermore, one can note from Figs. 12 and 13 that fluid velocities in the vertical direction
are damped in the entire liquid domain. This fluid behavior can be easily understood from
the fact that maximum electromagnetic damping of the fluid occurs when the velocity field
v is oriented orthogonal to the unit magnetic field vectoreB because of the particular form
of the electromagnetic damping force (F ∝ (v× eB)× eB).
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FIG. 12. Calculated contours of stream function, solute concentration, and temperature fields at timesτ = 3
andτ = 6 for the solidification of SbGe under normal gravity conditions and a horizontally imposed external
magnetic field (Ha= 100).

In the above results corresponding to solidification under normal gravity conditions,
the Bond number is approximately 10 and hence buoyancy dominates over surface tension
forces. In order to study the influence of a externally applied magnetic field on a solidification
problem driven mainly by surface tension forces, a similar simulation corresponding to al-
most zero gravity was performed. Results of the calculation are illustrated in Figs. 14 and 15.

As can be seen from Figs. 14 and 15, the simulation under reduced gravity conditions
demonstrates that application of a magnetic field plays an entirely different role in the
absence of gravity. Since the gravity level is extremely low (g = 10−5gearth), the main
driving force for convection in the fluid is thermocapillary convection. Thermal gradients
on the free surface lead to a surface-tension-driven flow. Continuity leads to a “back flow.”
Since the magnetic field is oriented in the horizontal direction, velocity components in the
vertical direction are significantly damped. Hence, the fluid circulation tends to be as “flat”
as possible. This leads to the counter-clockwise recirculating flow structure shown in Fig. 14.
Note that the strong fluid flow is restricted mainly to the upper part of the cavity. Immediately
below this counter-clockwise circulation, a shear-driven clockwise weak circulation as well
as a counter-clockwise weak circulation resulting from buoyancy can also be observed. This
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FIG. 13. Calculated contours of stream function, solute concentration, and temperature fields at timeτ = 10
for the solidification of SbGe under normal gravity conditions and a horizontally imposed external magnetic field
(Ha = 100).

fluid flow structure is maintained throughout the entire solidification process, although the
intensity of the convection keeps varying with time.

This peculiar behavior of the fluid flow in the melt has important consequences on
the solidification problem. As illustrated in Figs. 14 and 15, the temperature contours are
almost vertical except very near the free surface. The distortion of the isotherms near the
free surface is a direct consequence of the melt flow in that region. The solute concentration
field is also affected by the complex fluid flow. At very early times, because of the absence
of convection, the solute rejected at the interface0I is transported into the bulk liquid
mainly via diffusion. Because of the high Lewis number (Le= 330) of the system, this
diffusion layer is restricted mainly to a region close to0I . With continued solidification,
the melt flow develops, and the solute is carried by the convecting fluid. Since the fluid
flow is such that the strong melt flow is mainly restricted to the upper part of the cavity, the
solute transport by convection is also confined mainly to this region of the cavity. The solute
transport in the bottom parts of the cavity is mainly through diffusion and the weak shear-
and buoyancy-driven cells. This explains the solute patterns seen in Fig. 14 corresponding
to timeτ = 2. With further solidification, some of the solute collected in the upper regions
of the cavity is slowly transported to the bottom part as a result of the combined effects of
buoyancy and shear driven convecting weak flow as well as through diffusion. Because of
the weak nature of the shear- and buoyancy-driven cells, the solute collects at the bottom
and forms the stratified layer, as seen in Figs. 14 and 15 at later times.

Figure 16 compares the solid–liquid interface solute pattern for the above two simulations
(under normal and reduced gravity conditions) with an applied magnetic field. As expected,
markedly different transport patterns in the two systems lead to entirely different form of
solute segregation. As seen in Fig. 16(a), the maximum solute concentration under normal
gravity conditions is seen in the bottom part of the rectangular cavity at very early times.
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FIG. 14. Calculated contours of stream function, solute concentration, and temperature fields at timesτ = 2
andτ = 5 for the solidification of SbGe under reduced gravity (g = 10−5gearth) conditions and a horizontally
imposed external magnetic field (Ha= 100).

This is consistent with the transport patterns seen in Figs. 12 and 13. In contrast, Fig. 16b
shows that the maximum solute collection occurs very near the free surface and at early
times. This trend is in conformity with the fluid flow circulation seen in Figs. 14 and 15,
which is restricted mainly to regions close to the free surface.

Distinct transport behavior of the two systems under different gravity conditions also has
important implications on the shape of0I . As can be clearly seen by comparing Figs. 12
and 13 and Figs. 14 and 15, the interface macroscopic curvature is predominantly decreased
under reduced gravity conditions. In order to quantify and compare the extent of distortion
of 0I during the two simulations, a standard deviationσs is defined as

σs(t) =
{

1

N

N∑
i=1

[s(i, t)− s̄(t)]2

} 1
2

, (18)

wheres(i, t) is the nodal location of thei th interface node, and̄s(t) is the average of all
the interface nodal locations at timet . Figure 17 compares this standard deviation for the
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FIG. 15. Calculated contours of stream function, solute concentration, and temperature fields at timeτ = 10
for the solidification of SbGe under reduced gravity (g = 10−5gearth) conditions and a horizontally imposed external
magnetic field (Ha= 100).

above simulations. As can be seen from this figure, the maximum interface distortion for
the reduced gravity case is around four times less than that corresponding to the case under
normal gravity conditions. Note that this marked difference in the interface macroscopic
curvature is not evident without the presence of a magnetic field (compare the shapes of0I

in Figs. 6 and 10). Also note that the steady increase in the curvature of0I in Fig. 17 is a
direct consequence of the increasing strength of the fluid flow in the melt with time.

4.3.1. Effects of varying the strength of the applied magnetic field.It is quite evident
from the analysis presented earlier that an applied magnetic field plays a very important role
in the solidification process. In an attempt to shed further light on the various interesting phe-
nomena, a sequence of simulations was performed under varying magnetic field strengths.

FIG. 16. Calculated history of the solid–liquid interface concentration during the entire simulation of SbGe
solidification under the influence of a horizontally applied magnetic field (Ha = 100): (a) normal gravity conditions
and (b) reduced gravity (g = 10−5gearth) conditions.
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FIG. 17. The variation of the standard deviationσs(t) for the solidification simulation under normal and
reduced gravity (g = 10−5gearth) conditions. There is an imposed magnetic field (Ha = 100) in the horizontal
direction. Note the significant drop in the interface macroscopic curvature under reduced gravity conditions.

Simulations were performed under magnetic field strengths in the range 0< Ha < 400
applied in the horizontal direction. Calculations were performed both under normal and
under extremely low gravity levels. Such a study would help us understand the effects of
magnetic fields on the two extreme cases considered earlier—one solidification problem
driven mainly by buoyancy forces and another driven mainly by surface tension forces on
the free surface.

Figure 18 illustrates the variety of melt flow patterns obtained by varying the strength of
the applied magnetic field. The results correspond to timeτ = 10. Figures 18a–18d depict
the flow patterns corresponding to solidification under normal gravity conditions, whereas
Figs. 18e–18h show the flow fields for the simulation under reduced gravity conditions.
In both cases, the predominant effect of increasing the magnetic field is to damp the fluid
flow. This is very clear by comparing the maximum stream function values at various
magnetic field strengths (see Fig. 19). In the simulation case under normal gravity conditions,
increasing the magnetic field strength also significantly changes the melt flow pattern.
When a sufficiently strong magnetic field is applied (Ha > 25), secondary cell formation
is suppressed, and the central circulation is seen to spread gradually over the whole cavity.
On a further increase in the Hartmann number (Ha ≈ 100), the streamlines accumulate
near the free surface and the interface0I indicating the existence of strong boundary layers
on these boundaries. Increasing the magnetic field strength further reveals a very interesting
fluid behavior. As seen in Fig. 18d, an entirely different flow structure evolves when the
Hartmann number is increased to a value of 200. The flow pattern shows that a strong
surface-tension-driven counter-clockwise cell forms very near the free surface, whereas a
weak buoyancy-driven recirculating cell occupies the rest of the cavity. This separation
of the convection rolls of the thermocapillary convection and of buoyant convection is
triggered by the suppression of vertical velocities because of the high magnetic field. Since
the applied horizontal magnetic field damps vertical velocities but has no effect on horizontal
components, the thermocapillary “back flow” occurs very close to the free surface.

In contrast to the normal gravity case, the simulations under reduced gravity conditions
show a more gradual change in the flow structure. Since the flow is mainly driven by
surface-tension forces, buoyancy plays almost no role in these simulations. At low Hartmann
numbers (Ha < 20), the thermocapillary flow develops sufficient intensity such that the
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FIG. 18. Calculated contours of stream function at timeτ = 10 for the solidification of SbGe under the
influence of an externally imposed horizontal magnetic field. Solidification under normal gravity conditions:
(a)Ha= 10; (b)Ha= 50; (c)Ha= 100; (d)Ha= 200. Growth under reduced gravity (g = 10−5gearth) conditions:
(e)Ha= 10; (f) Ha= 50; (g)Ha= 100; (h)Ha= 200.

recirculating cell pattern occupies almost the entire upper half of the melt domain. However,
with increasing values of the Hartmann number, the magnetic field significantly damps the
vertical fluid motion and restricts the propagation of the surface-tension-driven fluid flow
into the inner parts of the cavity. Hence, at large Hartmann numbers (Ha > 100), the
thermocapillary flow is restricted mainly to a layer adjacent to the free liquid surface (see
Fig. 18(h)).

The significant variation in the various transport phenomena with varying magnetic field
strengths has a tremendous impact on the solidification parameters such as the shape of
the interface0I . For example, as can be deciphered by comparing Fig. 18a and Fig. 18d,
increasing the magnetic field strength increases the solidification velocities on the top
surface. Furthermore, the overall interface shapes are also affected significantly. Simi-
lar behavior is observed even for solidification under reduced gravity conditions, though
the change in solidification growth velocities is not as prominent. As one can note from
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FIG. 19. Maximum value of stream function as a function of the applied Hartmann number for solidification
simulations under normal as well as extremely low gravity levels (g = 10−5gearth). The applied magnetic field is
aligned along the positivex-direction.

Fig. 18h, solidification under reduced gravity and sufficiently strong magnetic field ensures
that0I is almost vertical. Achieving a flat interface growth in the presence of melt convec-
tion has been a very important objective in the processing of advanced materials [17, 32].
In order to quantify the deviation from “flat-interface growth,” the standard deviationσs(t)
(see Eq. (18)) is calculated for the various simulations under normal as well as reduced
gravity conditions. The results are illustrated in Fig. 20.

4.3.2. Effects of varying the orientation of the applied magnetic field.Considering
that the electromagnetic forceF ∝ (v× eB)× eB, it is natural to expect that altering the
magnetic field orientation will reveal dramatic modification in various transport phenomena.
To characterize these effects, an extensive series of simulations of SbGe solidification were
conducted at various inclinations of the magnetic field withHa= 100. Simulations were
conducted at both normal and low gravity levels in order to study independently the effects
of varying the orientation of the magnetic field on the two extreme cases considered earlier.

FIG. 20. The variation of the standard deviationσs(t) for phase-change under the influence of a horizontally
imposed external magnetic field: (a) solidification under normal gravity conditions and different Hartmann numbers
and (b) solidification under reduced gravity (g = 10−5gearth) conditions and different Hartmann numbers. Notice
how the interface macroscopic curvature decreases with increasing magnetic field strength.
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FIG. 21. Calculated contours of stream function at timeτ = 10 for the solidification of SbGe under the
influence of an externally imposed magnetic field (Ha= 100) at various magnetic field orientations. Solidification
under normal gravity conditions: (a) along thex-axis; (b) 30◦ ccw to thex-axis; (c) 60◦ ccw to thex-axis; and
(d) along they-axis, solidification under reduced gravity (g = 10−5gearth) conditions: (e) along thex-axis; (f) 30◦

ccw to thex-axis; (g) 60◦ ccw to thex-axis; and (h) along they-axis.

Figure 21 shows the variety of flow patterns obtained for various magnetic field in-
clinations at the final timeτ = 10. Figures 21a–21d show the flow patterns obtained for
solidification under normal gravity conditions, whereas Figs. 21e–21h show the flow pat-
terns for solidification under very low-gravity levels (g = 10−5gearth). In both cases of
solidification under normal and reduced gravity, increasing the inclination of the magnetic
field appears to damp the fluid flow. Even though the change in the intensity of convection
is significant, the more prominent effect of varying the orientation of the magnetic field is
to alter drastically the structure of the fluid flow. In the case of solidification under normal
gravity conditions, this change in structure of the flow is evident only at considerably large
differences in orientation (compare Fig. 21a and Fig. 21d). However, as can be seen from
Figs. 21e–21f), for the case of solidification under reduced gravity conditions, even slight
variation in the orientation of the magnetic field drastically alters the orientation of the
velocity vectors. This change in the flow structure affects various transport phenomena and
ultimately the quality of the final crystal.
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The change in the orientation of the magnetic field does not seem to have a great influence
on the solidification growth velocities or the shape of0I . This is in contrast to the earlier
case of altering the strength of the magnetic field. A probable reason for this behavior could
be the fact that the interface0I is more influenced by the strength of the convection in the
fluid and to a lesser degree by the exact structure of the flow in the melt.

5. SUMMARY AND CONCLUSIONS

The directional solidification of a binary alloy with an externally applied magnetic
field was considered in this work. The proposed computational procedures were demon-
strated with a transient simulation of solidification of antimony-doped germanium in an
open-boat configuration. To assess the comparative effects of thermocapillary-, buoyancy-,
and electromagnetically-driven convection, extensive series of transient calculations were
performed under varying gravity levels, magnetic field strengths, and magnetic field orien-
tations.

The reported calculations demonstrate that thermocapillary convection plays an important
role in the solidification process. Under low-gravity conditions and in the absence of any
external magnetic field, the melt flow develops at the free surface and slowly diffuses into the
liquid. This particular phenomena leads to the local accumulation of solute and formation
of various “high solute concentration spots.”

Solidification under the influence of an external magnetic field is shown to produce many
desirable effects. For increasing strength of the magnetic field, the intensity of the con-
vective flow decreases and is followed by a progressive change in the overall structure of
the flow. Some other interesting findings include: (i) increasing Hartmann number sup-
presses secondary cell formation and leads to boundary-layer formation near rigid walls;
(ii) the characteristics of the final flow structure strongly depends on various factors such
as orientation and strength of the applied magnetic field and gravity level; (iii) sufficiently
strong magnetic fields significantly damp the convection in the melt resulting in a vertical
solidification front; and (iv) application of a sufficiently strong magnetic field can greatly
influence the pattern of solute distribution in the final solid.

Although restrictions related to model simplifications and computational costs limit the
extent to which the present calculations provide a precise description of the behavior of a gen-
eral solidification system, important trends in the various transport patterns have neverthe-
less been inferred. In particular, the calculations reveal the manner in which thermocapillary-
and buoyancy-driven convection may interact with an applied magnetic field to influence
flow development during the transient solidification of a binary alloy. In addition, the study
reveals various features of the actual process which may be used in a successful design of
the above process for control of the microstructure and properties of the cast product. Work
in this regard is currently being pursued.
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